The scope of the following work was to analyse, through the CFD software ANSYS Fluent, the effects of different-sizes alumina agglomerates, originated by the combustion of aluminium powder in Solid Rocket Motors, on the expansion process of the gaseous combustion products inside the nozzle and on the motor performances. First, the state-of-the-art models and procedures related to the numerical simulation of multi-phase flows have been introduced and explained. The Lagrangian particle tracking in a Euler-Lagrangian scheme was chosen to carry out all the simulations. The problem was simplified to a 2D-Axisymmetric geometry, to save some computational cost. The agglomerates have been treated as inert particles, with evaporation, condensation, collisions and breakup not considered. The baseline of the study was the work carried out by Chang et al. [1] over a multiphase fluid composed by air and inert alumina particles of various diameters flowing through a JPL nozzle. It was replicated to validate the multi-phase flow numerical resolution method proposed. The main tendencies of the flow properties reported into the baseline were confirmed and the proposed model validated. Both the “Momentum Lag” and “Thermal Lag” have been quantified in terms of performances losses and variations of the flow quantities. Once verified the numerical model chosen, a real combustion products mixture was implemented through the NASA CEA code and an appropriate MATLAB script to determine the involved chemical specie, as well as their transport and thermodynamic properties, such as the specific heat, the viscosity and the thermal conductivity, in function of the temperature. These data have been transferred to an ANSYS Fluent simulation to solve the multi-phase flow composed by the real mixture and three different particles diameters. The most interesting results have been the correlations between the sizes of the alumina agglomerates and the thrust and specific impulse losses. It has been demonstrated that the smaller the particles, the smaller the losses, especially in terms of specific impulse. Other useful outcomes have been the computation of the gas momentum loss due to the interaction with the discrete phase and the determination of the particles momentum contribution to the thrust in function of the diameters sizes.
Lo scopo del seguente lavoro è stato determinare, tramite l’ausilio del software di CFD ANSYS Fluent, l’effetto degli agglomerati di allumina, prodotti dalla combustione della polvere di alluminio in un motore a razzo a propellente solido, sul processo di espansione in ugello dei prodotti di combustione gassosi e sulle performance del motore. Inizialmente, è stato presentato e descritto lo stato dell’arte della modellazione e delle procedure relative alla simulazione numerica di un fluido multifase. Il modello scelto per svolgere le simulazioni è stato basato su uno schema Euleriano-Lagragiano con un tracciamento Lagrangiano delle particelle. Per risparmiare costo computazionale, la geometria dell’ugello è stata considerata bidimensionale, assumendo la simmetria assiale del corpo. Gli agglomerati di allumina sono stati considerati come particelle inerti, rinunciando quindi a modellarne la rottura, l’evaporazione, la condensazione e la coalescenza tra più gocce dovuta alle collisioni. Il riferimento scelto per sviluppare la tesi è stato il lavoro di Chang et al. [1], in cui un ugello del JPL è stato simulato con un flusso multifase composto da aria e particelle inerti di allumina di vari diametri. La simulazione è stata replicata per poter validare il modello numerico di fluido multifase proposto. I principali risultati mostrati dal riferimento scelto sono stati confermati e il modello proposto validato. Sia il “Momentum Lag” che il “Thermal Lag” sono stati quantificati in termini di Perdita di performance del motore. Una volta verificato il modello numerico implementato, una miscela reale dei prodotti della combustione di AP, HTPB e microalluminio è stata generata con l’ausilio del NASA CEA e di un codice MATLAB, utilizzati per determinare le specie chimiche coinvolte e le proprietà termodinamiche della miscela stessa, come calore specifico, viscosità e conducibilità termica, in funzione della temperatura. Questi dati sono stati quindi utilizzati per implementare in ANSYS Fluent una simulazione multifase che considerasse la miscela reale e tre tipologie di particelle con diametro diverso. Il risultato più interessante ha visto la correlazione tra la dimensione degli agglomerati e le perdite di spinta e impulso specifico. In particolare, si è ottenuto che più sono piccoli gli agglomerati, meno diminuisce la performance complessiva del motore. È stata calcolata anche la perdita di quantità di moto del gas dovuta all’interazione con la fase discreta e il contributo della quantità di moto delle particelle nel calcolo della spinta in funzione della loro dimensione.
Numerical simulation of gas-particle two-phase flow in a nozzle with ANSYS Fluent
PASTURENZI, LORENZO
2021/2022
Abstract
The scope of the following work was to analyse, through the CFD software ANSYS Fluent, the effects of different-sizes alumina agglomerates, originated by the combustion of aluminium powder in Solid Rocket Motors, on the expansion process of the gaseous combustion products inside the nozzle and on the motor performances. First, the state-of-the-art models and procedures related to the numerical simulation of multi-phase flows have been introduced and explained. The Lagrangian particle tracking in a Euler-Lagrangian scheme was chosen to carry out all the simulations. The problem was simplified to a 2D-Axisymmetric geometry, to save some computational cost. The agglomerates have been treated as inert particles, with evaporation, condensation, collisions and breakup not considered. The baseline of the study was the work carried out by Chang et al. [1] over a multiphase fluid composed by air and inert alumina particles of various diameters flowing through a JPL nozzle. It was replicated to validate the multi-phase flow numerical resolution method proposed. The main tendencies of the flow properties reported into the baseline were confirmed and the proposed model validated. Both the “Momentum Lag” and “Thermal Lag” have been quantified in terms of performances losses and variations of the flow quantities. Once verified the numerical model chosen, a real combustion products mixture was implemented through the NASA CEA code and an appropriate MATLAB script to determine the involved chemical specie, as well as their transport and thermodynamic properties, such as the specific heat, the viscosity and the thermal conductivity, in function of the temperature. These data have been transferred to an ANSYS Fluent simulation to solve the multi-phase flow composed by the real mixture and three different particles diameters. The most interesting results have been the correlations between the sizes of the alumina agglomerates and the thrust and specific impulse losses. It has been demonstrated that the smaller the particles, the smaller the losses, especially in terms of specific impulse. Other useful outcomes have been the computation of the gas momentum loss due to the interaction with the discrete phase and the determination of the particles momentum contribution to the thrust in function of the diameters sizes.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Pasturenzi_Lorenzo_944610_DEF.pdf
non accessibile
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/190211