This thesis work is intended to investigate a new approach to model a geothermal power plant: genGEO. The common technology to produce electricity from a geothermal reservoir is based on the so-called Binary configuration. Thus, the usual procedure to model the whole system is performed in two steps. A first software is needed in order to simulate the geothermal reservoir, hosting the hot brine, and the well system used to extract the geofluid and then reinject it back into the reservoir. Among all, one commonly used software is Doublet Calc, by TNO. Before being reinjected into the ground, the hot water will release its thermal content to the working fluid of the power cycle, also referred to as ORC fluid, intended to produce electricity. Hence, another software is needed to model the power cycle itself, like for instance Aspen Plus. Conversely, genGEOcan solve simultaneously both the water cycle (reservoir and well system) and the power cycle (Organic Rankine Cycle). Thus, by running genGEO, the simulation of the geothermal system as a whole can be performed in one single step and using only one software, saving computational time and power. The key element of genGEO is its generalizability and flexibility, since it is a Python script, but above all it is open source, and it relies, for the evaluation of the thermodynamic properties, on a yet another open-source library, i.e, CoolProp. The numerical code, hence, can be freely modified so to overcome the limitations of the base version of the tool and/or to model every kind or reservoir or power cycle. After an overview of the geothermal energy, illustrating the several geothermal resources and their related applications to produce either heat or electricity, genGEO is presented and its models explained. The goal is twofold: 1) there is not a genGEO manual, so that this work may be seen as a contribution to guide a new user among the several scripts of the code, 2) understanding the code architecture is crucial to manage all the simulation parameters, realizing their mutual influence. Then, the attention was focused on the main code limitations and,therefore, all the attempts to overcome them are presented. The implemented modifications have been then validated considering three case studies, referred to three existing power plants: the Altheim, the Simbach-Braunau and the Soultz power plants. Once the reliability of the code modifications has been proved, genGEO is used to performa feasibility study of a geothermal power plant located in Western Sicily. Together with the critical choice of the input parameters and the analysis of the simulation outcomes, the optimization of the thermodynamic cycle is proposed. The code has been, then, restyled so to be able to optimize severaldesign parameters, as the evaporation temperature or the pinch point temperature difference at the primary heat exchanger. The results are shown by means of contour plots and parametric analyses. The idea is that the user can have a clear vision about which is the parameter combination which maximizes the power output and/or minimizes the levelized cost of electricity of the plant.
Per modellare un sistema geotermico, in una configurazione binaria ORC (Organic Rankine Cycle), la consolidata procedura utilizzata finora si basava sull’utilizzo di due software. Come prima cosa si definiva il sistema geotermico, inteso come la coppia di pozzi, uno di iniezione e uno di produzione, collegato in superficie ad uno scambiatore di calore, chiamato PHE (Primary Heat Exchanger). Lo scopo principale è quello di definire, una volta settati i parametri fisici della riserva geotermica e la geometri dei pozzi, le condizioni termodinamiche (pressione e temperarura) del fluido geotermico (acqua) in ingresso e in uscita dallo scambiatore, nonché la portata del fluido geotermico stesso. Tra tutti, uno dei software più utilizzati e ormai consolidati è Doublet Calc, sviluppato da TNO. Il bilancio di energia allo scambiatore, permette di accoppiare il doppietto geotermico al ciclo di potenza, preposto alla produzione di energia elettrica. La simulazione del ciclo di potenza può essere eseguita, ad esempio, tramite Aspen Plus. Lo scopo di questa tesi è, quindi, di superare tale procedura, che potrebbe risultare onerosa da un punto di vista computazionale. Si è quindi indagato la possibilità di modellare l’intero impianto, ossia sia il doppietto geotermico che l’impianto di potenza, utilizzando un solo software: genGEO. genGEO si presenta come un programma open source, interamente scritto in Python. Il calcolo delle proprietà termodinamiche è affidato a una libreria esterna, anch’essa open surce, chiamata CoolProp. Trattandosi di uno script Python è chiaro come i gradi di libertà siano pressocchè infiniti; modificando il codice è possibile ad esempio modellare diversi tipi di riserva (idrotermale, HDR e così via) così come qualsivoglia layout per l’impianto ORC, adibito alla produzione di energia elettrica. Dopo una breve introduzione sull’energia geotermica e le principali tecnologie sviluppate per sfruttarla, sia per la produzione di solo calore che per la produzione di energia elettrcia, i modelli implementati in genGEO vengono spiegati e organizzati in maniera sistematica e logica. L’idea è come prima cosa di fornire una sorta di user guide, dal momento che il codice ne è sprovvisto, e dall’altra di definire con chiarezza le relazioni che intercorrono tra i diversi parametri così da avere un maggiore senso critico nella selezione dei parametri stessi. Il codice è stato estensivamente modificato in modo da migliorarlo ed estenderne le sue capacità. Di fatti, così come fornito, il codice non era in grado di simulare qualsiasi impianto ma solo alcuni specifici casi, implementati dagli auotri stessi del codice. Le modifiche sono poi state validate tarmite dei casi studio, attraverso la simulazione degli impianti di: 1) Alhteim, 2) Simbach-Braunau, 3) Soultz. Infine, il codice, così potenziato e arricchito, è stato utilizzato per simulare un impianto geotermico in Sicilia, corredato non solo da una valutazione tecnica ma anche economica. In questo contesto, la struttura di genGEO è stata completamente stravolta, così che è possibile ottimizzare i tipici parametri di progetto di un ciclo di potenza, ossia la temperatura di evaporazione e il pinch point del PHE. E’ stata quindi eseguita un’analisi parametrica cosicchè l’user possa individuare la combinazione dei parametri che massimizzi la potenza oppure minimizzi i costi, in termini di LCOE (Levelized Cost Of Electricity).
Modelling a geothermal reservoir for electricity production using genGEO : a novel approach
MARSEGLIA, IVO
2021/2022
Abstract
This thesis work is intended to investigate a new approach to model a geothermal power plant: genGEO. The common technology to produce electricity from a geothermal reservoir is based on the so-called Binary configuration. Thus, the usual procedure to model the whole system is performed in two steps. A first software is needed in order to simulate the geothermal reservoir, hosting the hot brine, and the well system used to extract the geofluid and then reinject it back into the reservoir. Among all, one commonly used software is Doublet Calc, by TNO. Before being reinjected into the ground, the hot water will release its thermal content to the working fluid of the power cycle, also referred to as ORC fluid, intended to produce electricity. Hence, another software is needed to model the power cycle itself, like for instance Aspen Plus. Conversely, genGEOcan solve simultaneously both the water cycle (reservoir and well system) and the power cycle (Organic Rankine Cycle). Thus, by running genGEO, the simulation of the geothermal system as a whole can be performed in one single step and using only one software, saving computational time and power. The key element of genGEO is its generalizability and flexibility, since it is a Python script, but above all it is open source, and it relies, for the evaluation of the thermodynamic properties, on a yet another open-source library, i.e, CoolProp. The numerical code, hence, can be freely modified so to overcome the limitations of the base version of the tool and/or to model every kind or reservoir or power cycle. After an overview of the geothermal energy, illustrating the several geothermal resources and their related applications to produce either heat or electricity, genGEO is presented and its models explained. The goal is twofold: 1) there is not a genGEO manual, so that this work may be seen as a contribution to guide a new user among the several scripts of the code, 2) understanding the code architecture is crucial to manage all the simulation parameters, realizing their mutual influence. Then, the attention was focused on the main code limitations and,therefore, all the attempts to overcome them are presented. The implemented modifications have been then validated considering three case studies, referred to three existing power plants: the Altheim, the Simbach-Braunau and the Soultz power plants. Once the reliability of the code modifications has been proved, genGEO is used to performa feasibility study of a geothermal power plant located in Western Sicily. Together with the critical choice of the input parameters and the analysis of the simulation outcomes, the optimization of the thermodynamic cycle is proposed. The code has been, then, restyled so to be able to optimize severaldesign parameters, as the evaporation temperature or the pinch point temperature difference at the primary heat exchanger. The results are shown by means of contour plots and parametric analyses. The idea is that the user can have a clear vision about which is the parameter combination which maximizes the power output and/or minimizes the levelized cost of electricity of the plant.File | Dimensione | Formato | |
---|---|---|---|
2022_7_Marseglia_01.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
5.49 MB
Formato
Adobe PDF
|
5.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/190301