The entire scenario of internal combustion engines (ICE) is vast and the different possible technologies are many. The main distinction in ICE concerns the type of ignition. Two main types of ignition analyzed are spark ignition and compression ignition. In the spark ignition engine, a spark plug produces a spark between two electrodes which supplies the mixture with the energy it needs to start combustion. In typical compression ignition there is no spark plug but, at a given temperature and pressure, the mixture ignites without an external component that supplies energy. In this work we will analyse an innovative model capable of predicting the heat release rate (HRR) and NOx emissions in an CI engine through a new thermodynamic model with constant equivalence ratio zones that allows to reduce computational efforts and consequently it reduces the simulation times. The model describes the use of some parameters (tabulated kinetics of ignitions - TKI) in order to process the chemical reactions and reduce the computational effort. The model analyses three cases: a pressure vessel where the jet is free to develop, a pressure vessel with a wall where the jet hits and finally a real engine. Results of simulations have been confronted with experimental data in order to find a correspondence between model and experiments. A theoretical approach of the model with turbulent jet ignition technology has been developed in which the main chamber has been divided into several zones, but, unlike the CI engine, the main chamber is divided as a function of a mixing parameter.
L'intero scenario dei motori a combustione interna (ICE) è vastissimo e le diverse tecnologie possibili sono molteplici. La principale distinzione negli ICE riguarda il tipo di accensione. I due principali tipi di accensione analizzati sono i motori ad accensione comandata e i motori ad accensione per compressione. Nel motore ad accensione comandata una candela produce tra due elettrodi una scintilla che fornisce alla miscela l'energia necessaria per avviare la combustione. Nella tipica accensione per compressione non c'è la candela ma, ad una data temperatura e pressione, la miscela si accende senza un componente esterno che fornisca energia. In questo lavoro verrà analizzato un modello innovativo in grado di predire il tasso di rilascio di calore (HRR) e le emissioni di NOx in un motore CI tramite un nuovo modello termodinamico con zone a rapporto di equivalenza costante che consente di ridurre gli sforzi computazionali e di conseguenza riduce i tempi delle simulazioni. Il modello descrive l'uso di alcuni parametri (TKI) per processare le reazioni chimiche e ridurre lo sforzo computazionale. Il modello analizza tre casi: un recipiente a pressione dove il getto è libero di svilupparsi, un recipiente a pressione con una parete dove il getto urta ed infine un motore reale. I risultati delle simulazioni sono stati confrontati con dati sperimentali per trovare una corrispondenza tra modello ed esperimenti. È stato sviluppato un approccio teorico del modello con tecnologia di TJI in cui la camera principale è stata suddivisa in più zone, ma, a differenza del motore CI, la camera principale è suddivisa in funzione di un parametro di miscelazione.
Validation of an advanced thermo-fluid dynamic model for the prediction of HRR and NOx emissions in CI engines
Castorina, Giovanni
2021/2022
Abstract
The entire scenario of internal combustion engines (ICE) is vast and the different possible technologies are many. The main distinction in ICE concerns the type of ignition. Two main types of ignition analyzed are spark ignition and compression ignition. In the spark ignition engine, a spark plug produces a spark between two electrodes which supplies the mixture with the energy it needs to start combustion. In typical compression ignition there is no spark plug but, at a given temperature and pressure, the mixture ignites without an external component that supplies energy. In this work we will analyse an innovative model capable of predicting the heat release rate (HRR) and NOx emissions in an CI engine through a new thermodynamic model with constant equivalence ratio zones that allows to reduce computational efforts and consequently it reduces the simulation times. The model describes the use of some parameters (tabulated kinetics of ignitions - TKI) in order to process the chemical reactions and reduce the computational effort. The model analyses three cases: a pressure vessel where the jet is free to develop, a pressure vessel with a wall where the jet hits and finally a real engine. Results of simulations have been confronted with experimental data in order to find a correspondence between model and experiments. A theoretical approach of the model with turbulent jet ignition technology has been developed in which the main chamber has been divided into several zones, but, unlike the CI engine, the main chamber is divided as a function of a mixing parameter.File | Dimensione | Formato | |
---|---|---|---|
2022_07_Castorina.pdf
accessibile in internet per tutti
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/190409