The Lunar Orbital Platform-Gateway (LOP-G), which is scheduled to launch in 2024, will serve as the future human outpost for lunar and deep space exploration. In this scenario, new trajectory designs are needed to efficiently leave the Cislunar environment and escape the Earth-Moon System. In general, gravity assists represent an effective way to reduce mission costs but in a complex scenario, like the Cislunar environment, the design of one or more gravity assists is far from trivial. In the context of the Circular Restricted 3-Body Problem (CR3BP), this work explores the possibility of using Resonant Hopping to reduce the overall cost to escape. The Patched Periodic Orbits (PPO) model is used to quickly create sequences of resonant or quasi-resonant flybys at the Moon. This technique involves patching resonant orbits gathered in a precomputed database through an optimization problem. This eliminates the need for computationally expensive manifolds and makes the problem more flexible and modular. The procedure for creating the orbit database is discussed after a brief description of the CR3BP and the models used. Then, using a modified version of the Flyby Map, a function that compares the state before and after a gravity assist, a survey on potential orbital sequences is conducted. Finally, two distinct escape strategies are presented and compared: in the first, multiple flybys are performed to lower the spacecraft’s pericenter and thus reduce the magnitude of the escape maneuver required. The second strategy, in contrast, leverages Lunar Gravity Assists to effectively change the spacecraft’s energy while increasing its semi-major axis. The final flyby is targeted to inject the satellite onto an escape trajectory.
Il Lunar Orbital Platform-Gateway (LOP-G), il cui lancio è previsto nel 2024, rappre- senta il futuro avamposto umano per l’esplorazione lunare e del sistema solare. In questo scenario, diventa necessario lo studio di nuove traiettorie che permettano di lasciare ef- ficacemente l’ambiente cislunare e fuggire dal sistema Terra-Luna. In generale, i flybys rappresentano un modo efficace per ridurre il costo delle missioni, ma in uno scenario complesso come quello cislunare, il design di più gravity assist è tutt’altro che banale. Nel contesto del Circular Restricted 3-Body Problem (CR3BP), questo lavoro esplora la possibilità di utilizzare Resonant Hopping per ridurre il costo complessivo di escape. Per fare ciò, le sequenze di flybys risonanti o quasi risonanti vengono progettate utilizzando il modello Patched Periodic Orbits (PPO). Il methodo consiste nel creare un database di orbite risonanti le quali vengono poi unite attraverso un’ottimizzazione. Questo evita di calcolare i manifold delle orbite, consentendo di utilizzare una struttura più flessibile e modulare. Dopo aver descritto il CR3BP ed i modelli adottati, la procedura di creazione del database di orbite viene illustrata. Successivamente, per identificare le potenziali sequenze dei flybys, viene prima eseguita un’analisi energetica attraverso una versione modificata della Flyby Map. Quest’ultima è una funzione che confronta lo stato prima e dopo un flyby. Infine, vengono presentate e confrontate due distinte strategie di fuga: nella prima, più flybys vengono eseguiti per abbassare il pericentro del satellite, riducendo così il costo della manovra di fuga. La seconda strategia, al contrario, sfrutta la gravità lunare per cambiare efficacemente l’energia dello spacecraft aumentando contemporaneamente il suo semiasse maggiore. Il satellite viene poi immesso su di una traiettoria iperbolica attraverso un ultimo flyby.
Resonant hopping in the Earth-Moon system for planetary escape
Falorni, Federico
2021/2022
Abstract
The Lunar Orbital Platform-Gateway (LOP-G), which is scheduled to launch in 2024, will serve as the future human outpost for lunar and deep space exploration. In this scenario, new trajectory designs are needed to efficiently leave the Cislunar environment and escape the Earth-Moon System. In general, gravity assists represent an effective way to reduce mission costs but in a complex scenario, like the Cislunar environment, the design of one or more gravity assists is far from trivial. In the context of the Circular Restricted 3-Body Problem (CR3BP), this work explores the possibility of using Resonant Hopping to reduce the overall cost to escape. The Patched Periodic Orbits (PPO) model is used to quickly create sequences of resonant or quasi-resonant flybys at the Moon. This technique involves patching resonant orbits gathered in a precomputed database through an optimization problem. This eliminates the need for computationally expensive manifolds and makes the problem more flexible and modular. The procedure for creating the orbit database is discussed after a brief description of the CR3BP and the models used. Then, using a modified version of the Flyby Map, a function that compares the state before and after a gravity assist, a survey on potential orbital sequences is conducted. Finally, two distinct escape strategies are presented and compared: in the first, multiple flybys are performed to lower the spacecraft’s pericenter and thus reduce the magnitude of the escape maneuver required. The second strategy, in contrast, leverages Lunar Gravity Assists to effectively change the spacecraft’s energy while increasing its semi-major axis. The final flyby is targeted to inject the satellite onto an escape trajectory.File | Dimensione | Formato | |
---|---|---|---|
2022_07_Falorni_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
9.82 MB
Formato
Adobe PDF
|
9.82 MB | Adobe PDF | Visualizza/Apri |
2022_07_Falorni_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/190463