In this thesis I have carried out a study of snow in two different but correlated research areas: (i) Raman spectroscopy for the investigation of the physicochemical properties of several kinds of snow, characterized by a different grain morphology, and (ii) the friction between snow with different characteristics and materials of interest for winter sports. In the first part of my research, I studied different types of snow with Raman spectroscopy focusing on the analysis of the OH-stretching region. The thesis is divided into activities that correspond to specific research topics. In the first activity I compared the Raman spectrum of several snow samples (with different average grain size) with the Raman spectrum of ice. I could associate the observed differences between the spectra of ice and snow with the higher Specific Surface Area (SSA) of the snow samples. In the solid state, the water molecules at the surface assume a disordered spatial arrangement (in the so-called quasi-liquid layer); in the snow spectra the contribution from surfaces is more relevant. To validate this hypothesis, DFT simulations of the vibrational dynamics on ice and ice surfaces were performed. The differences between the simulated spectra of bulk ice and ice surface are qualitatively the same as in the experimental spectra of ice and snow. Finally, to investigate the effect of the UV radiation on snow, I compared the spectra of snow samples before and after 3 h of UV-A irradiation and I did not observe any significant changes. In the second activity I made a device to produce snow in the laboratory. The device is based on the ultrasonic nebulization of water and its subsequent condensation on the cold surfaces of a refrigerator. The images of the produced snow, acquired with a stereomicroscope, show the presence of two types of grain morphology: dendritic and granular. I characterized the produced snow with Raman spectroscopy. The spectra are comparable to those of freshly deposited, low density, natural snow. In the third activity, five campaigns were carried out to verify the usability of Raman spectroscopy as an in-situ diagnostic tool for the snowpack. Together with qualified personnel, the different snow layers of a snowpack were identified in the field. I then acquired the Raman spectra of the different snow layers in the field, obtaining data with a satisfactory resolution. The characteristics of the spectrum change in relation to the SSA of the different snow samples at different depths in the snowpack. This activity shows that it is possible to distinguish by Raman spectroscopy snow at different stages of metamorphism, characterized by a different average grain size and particle aggregation. In the fourth activity I reproduced in the laboratory the percolation of water in snow by using Raman spectroscopy to detect the presence and the quantity of the liquid phase. I progressively loaded the snow samples with liquid water (from dry snow up to wet snow). The spectra of wet snow are well described by a linear combination of the spectra of liquid water and ice (at 0°C). I could monitor the continuous evolution of the liquid water content by introducing a parameter that establishes the relative contribution of ice and water in the Raman spectra of the wet snow samples. The fifth activity was carried out at Elettra Sincrotrone Trieste where I could acquire the Raman spectra of liquid water and snow with excitation sources in the UV-C region. I compared the spectra obtained with deep UV excitation with those acquired with visible excitation (532 nm). In liquid water, moving towards higher energetic excitation sources, I observed a monotonous increase in the relative intensities of the peaks associated with weakly hydrogen-bonded water molecules. With the 532 nm excitation source, the Raman spectrum of snow, compared to the spectrum of ice, displays a greater contribution of water molecules at the surface, that are characterized by a weaker hydrogen bonding environment than those at the bulk. By using the UV-C excitation sources, we observe a further increase in the contribution of the surfaces in the Raman spectra of snow. Hence, UV-C sources induce selective pre-resonance excitation of weakly hydrogen-bonded water molecules. In the second part of the thesis, I studied the sliding friction between snow and the surfaces of different materials. The motivation was to identify a combination of material-surface treatment that has a friction coefficient similar to that of Ultra High Molecular Weight Polyethylene (UHMWPE, the state-of-the-art material for ski bases), but with greater abrasion resistance. I therefore studied the friction on snow of AISI 301 on whose surface Laser Induced Periodic Surface Structures (LIPSS) were obtained through ultra-short laser pulses (fs and ps). The laser treatment was carried out on four different samples of AISI 301. The SEM micrographs performed after the laser treatment show the formation of sub-micrometric ripples almost parallel to each other. The static contact angle with water indicates that the presence of LIPSS increases the hydrophobicity of the surfaces. I measured the friction coefficient between hard, compact snow and both bare and laser treated AISI 301. I compared the friction coefficient of the AISI 301 surfaces with that of UHMWPE. The laser treatments can reduce the friction between AISI 301 and snow. However, UHMWPE always has the lowest friction coefficient. After prolonged tribometer tests, the contact angle of the AISI 301 samples with LIPSS decreases, while the SEM micrographs on the same samples show the presence of localized scratches.
In questa tesi ho svolto uno studio della neve in due aree di ricerca diverse ma correlate: (i) la spettroscopia Raman per lo studio delle proprietà fisico-chimiche di diversi tipi di neve, caratterizzate da una diversa morfologia dei grani, e (ii) l'attrito tra neve con diverse caratteristiche e materiali di interesse per gli sport invernali. Nella prima parte della mia ricerca, ho studiato diversi tipi di neve con la spettroscopia Raman concentrandomi sull'analisi della regione OH-stretching. La tesi è articolata in attività che corrispondono a specifici temi di ricerca. Nella prima attività ho confrontato lo spettro Raman di diversi campioni di neve (con diverse granulometrie medie) con lo spettro Raman del ghiaccio. Ho associato le differenze osservate tra gli spettri di ghiaccio e neve con l'area di superficie specifica (SSA) più elevata nei campioni di neve. Allo stato solido, le molecole d'acqua in superficie assumono una disposizione spaziale disordinata (nel cosiddetto strato quasi liquido); negli spettri della neve è più rilevante il contributo delle superfici. Per convalidare questa ipotesi, sono state eseguite simulazioni DFT della dinamica vibrazionale su ghiaccio bulk e in superficie. Le differenze tra gli spettri simulati di ghiaccio bulk e ghiaccio in superficie sono qualitativamente le stesse degli spettri sperimentali di ghiaccio e neve. Infine, per studiare l'effetto della radiazione UV sulla neve, ho confrontato gli spettri dei campioni di neve prima e dopo 3 h di irraggiamento UV-A e non ho osservato cambiamenti significativi. Nella seconda attività ho realizzato un dispositivo per produrre neve in laboratorio. Il dispositivo si basa sulla nebulizzazione ultrasonica dell'acqua e la sua successiva condensazione sulle superfici fredde di un frigorifero. Le immagini della neve prodotta, acquisite allo stereomicroscopio, mostrano la presenza di due tipi di morfologia del grano: dendritica e granulare. Ho caratterizzato la neve prodotta con la spettroscopia Raman. Gli spettri sono paragonabili a quelli della neve naturale appena depositata, a bassa densità. Nella terza attività sono state condotte cinque campagne per verificare l'utilizzabilità della spettroscopia Raman come strumento diagnostico in situ per il manto nevoso. Insieme a personale qualificato sono stati individuati sul campo i diversi strati di neve di un manto nevoso. Ho quindi acquisito gli spettri Raman dei diversi strati di neve sul campo, ottenendo dati con una risoluzione soddisfacente. Le caratteristiche dello spettro cambiano in relazione alla SSA dei diversi campioni di neve a diverse profondità del manto nevoso. Questa attività mostra che è possibile distinguere mediante spettroscopia Raman la neve a diversi stadi di metamorfismo, caratterizzata da una diversa granulometria media e aggregazione delle particelle. Nella quarta attività ho riprodotto in laboratorio la percolazione dell'acqua nella neve utilizzando la spettroscopia Raman per rilevare la presenza e la quantità della fase liquida. Ho caricato progressivamente i campioni di neve con acqua liquida (da neve asciutta fino a neve bagnata). Gli spettri della neve bagnata sono ben descritti da una combinazione lineare degli spettri dell'acqua liquida e del ghiaccio (a 0°C). Ho monitorato la continua evoluzione del contenuto di acqua liquida introducendo un parametro che stabilisce il contributo relativo di ghiaccio e acqua negli spettri Raman dei campioni di neve bagnata. La quinta attività è stata svolta presso Elettra Sincrotrone Trieste dove ho potuto acquisire gli spettri Raman di acqua liquida e neve con sorgenti di eccitazione nella regione UV-C. Ho confrontato gli spettri ottenuti con eccitazione UV-C con quelli acquisiti con eccitazione visibile (532 nm). Nell'acqua liquida, spostandomi verso sorgenti di eccitazione ad energia più elevata, ho osservato un aumento monotono delle intensità relative dei picchi associati a molecole d'acqua debolmente legate da legame a idrogeno. Con la sorgente di eccitazione a 532 nm, lo spettro Raman della neve, rispetto allo spettro del ghiaccio, mostra un contributo maggiore di molecole d'acqua in superficie, che sono caratterizzate da un ambiente di legame a idrogeno più debolmente legato rispetto alle molecole nel bulk. Utilizzando le sorgenti di eccitazione UV-C, osserviamo un ulteriore aumento del contributo delle superfici negli spettri Raman della neve. Quindi, le sorgenti UV-C inducono l'eccitazione selettiva di pre-risonanza di molecole d'acqua debolmente legate da legame a idrogeno. Nella seconda parte della tesi ho studiato l'attrito radente tra la neve e le superfici di diversi materiali. La motivazione è stata quella di individuare una combinazione di materiale - trattamento superficiale che avesse un coefficiente di attrito simile a quello del polietilene ad altissimo peso molecolare (UHMWPE, il materiale attualmente utilizzato per le solette da sci), ma con una maggiore resistenza all'abrasione. Ho quindi studiato l'attrito su neve di AISI 301 sulla cui superficie sono state ottenute delle strutture superficiali periodiche indotte via laser, note come LIPSS (Laser-Induced Periodic Surface Structure) attraverso impulsi laser ultrabrevi (fs e ps). Il trattamento laser è stato effettuato su quattro diversi campioni di AISI 301. Le micrografie SEM eseguite dopo il trattamento laser mostrano la formazione di increspature sub-micrometriche quasi parallele tra loro. L'angolo di contatto statico con l'acqua indica che la presenza di LIPSS aumenta l'idrofobicità delle superfici. Ho misurato il coefficiente di attrito tra neve dura e compatta e i campioni in AISI 301, sia quello non trattato che quelli trattati al laser. Ho confrontato il coefficiente di attrito delle superfici in AISI 301 con quello di UHMWPE. I trattamenti laser possono ridurre l'attrito tra l'AISI 301 e la neve. Tuttavia, UHMWPE presenta sempre il coefficiente di attrito più basso. Dopo prolungati test su tribometro, l'angolo di contatto dei campioni in AISI 301 con LIPSS diminuisce, mentre le micrografie SEM sugli stessi campioni mostrano la presenza di rigature localizzate.
Spectroscopic analysis of snow surfaces in relation to the physico-chemical and mechanical behavior of different kinds of snow
MAGGIORE, ETTORE
2021/2022
Abstract
In this thesis I have carried out a study of snow in two different but correlated research areas: (i) Raman spectroscopy for the investigation of the physicochemical properties of several kinds of snow, characterized by a different grain morphology, and (ii) the friction between snow with different characteristics and materials of interest for winter sports. In the first part of my research, I studied different types of snow with Raman spectroscopy focusing on the analysis of the OH-stretching region. The thesis is divided into activities that correspond to specific research topics. In the first activity I compared the Raman spectrum of several snow samples (with different average grain size) with the Raman spectrum of ice. I could associate the observed differences between the spectra of ice and snow with the higher Specific Surface Area (SSA) of the snow samples. In the solid state, the water molecules at the surface assume a disordered spatial arrangement (in the so-called quasi-liquid layer); in the snow spectra the contribution from surfaces is more relevant. To validate this hypothesis, DFT simulations of the vibrational dynamics on ice and ice surfaces were performed. The differences between the simulated spectra of bulk ice and ice surface are qualitatively the same as in the experimental spectra of ice and snow. Finally, to investigate the effect of the UV radiation on snow, I compared the spectra of snow samples before and after 3 h of UV-A irradiation and I did not observe any significant changes. In the second activity I made a device to produce snow in the laboratory. The device is based on the ultrasonic nebulization of water and its subsequent condensation on the cold surfaces of a refrigerator. The images of the produced snow, acquired with a stereomicroscope, show the presence of two types of grain morphology: dendritic and granular. I characterized the produced snow with Raman spectroscopy. The spectra are comparable to those of freshly deposited, low density, natural snow. In the third activity, five campaigns were carried out to verify the usability of Raman spectroscopy as an in-situ diagnostic tool for the snowpack. Together with qualified personnel, the different snow layers of a snowpack were identified in the field. I then acquired the Raman spectra of the different snow layers in the field, obtaining data with a satisfactory resolution. The characteristics of the spectrum change in relation to the SSA of the different snow samples at different depths in the snowpack. This activity shows that it is possible to distinguish by Raman spectroscopy snow at different stages of metamorphism, characterized by a different average grain size and particle aggregation. In the fourth activity I reproduced in the laboratory the percolation of water in snow by using Raman spectroscopy to detect the presence and the quantity of the liquid phase. I progressively loaded the snow samples with liquid water (from dry snow up to wet snow). The spectra of wet snow are well described by a linear combination of the spectra of liquid water and ice (at 0°C). I could monitor the continuous evolution of the liquid water content by introducing a parameter that establishes the relative contribution of ice and water in the Raman spectra of the wet snow samples. The fifth activity was carried out at Elettra Sincrotrone Trieste where I could acquire the Raman spectra of liquid water and snow with excitation sources in the UV-C region. I compared the spectra obtained with deep UV excitation with those acquired with visible excitation (532 nm). In liquid water, moving towards higher energetic excitation sources, I observed a monotonous increase in the relative intensities of the peaks associated with weakly hydrogen-bonded water molecules. With the 532 nm excitation source, the Raman spectrum of snow, compared to the spectrum of ice, displays a greater contribution of water molecules at the surface, that are characterized by a weaker hydrogen bonding environment than those at the bulk. By using the UV-C excitation sources, we observe a further increase in the contribution of the surfaces in the Raman spectra of snow. Hence, UV-C sources induce selective pre-resonance excitation of weakly hydrogen-bonded water molecules. In the second part of the thesis, I studied the sliding friction between snow and the surfaces of different materials. The motivation was to identify a combination of material-surface treatment that has a friction coefficient similar to that of Ultra High Molecular Weight Polyethylene (UHMWPE, the state-of-the-art material for ski bases), but with greater abrasion resistance. I therefore studied the friction on snow of AISI 301 on whose surface Laser Induced Periodic Surface Structures (LIPSS) were obtained through ultra-short laser pulses (fs and ps). The laser treatment was carried out on four different samples of AISI 301. The SEM micrographs performed after the laser treatment show the formation of sub-micrometric ripples almost parallel to each other. The static contact angle with water indicates that the presence of LIPSS increases the hydrophobicity of the surfaces. I measured the friction coefficient between hard, compact snow and both bare and laser treated AISI 301. I compared the friction coefficient of the AISI 301 surfaces with that of UHMWPE. The laser treatments can reduce the friction between AISI 301 and snow. However, UHMWPE always has the lowest friction coefficient. After prolonged tribometer tests, the contact angle of the AISI 301 samples with LIPSS decreases, while the SEM micrographs on the same samples show the presence of localized scratches.File | Dimensione | Formato | |
---|---|---|---|
Ettore Maggiore_PhD Thesis.pdf
embargo fino al 09/09/2025
Descrizione: PhD Thesis
Dimensione
6.46 MB
Formato
Adobe PDF
|
6.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/190574