In this thesis we study the concept of illiquidity, and the role it plays in the financial scene and, in particular, in optimal portfolio construction problems. Among the possible definitions of illiquidity, we follow the approach of Kyle, according to which an asset is illiquid if either its price undergoes instantaneous variations (shocks) at random times or if it is not possible to trade such an asset on the market whenever one wishes to, but only at specific times, possibly random. We then apply this concept of illiquidity to a generalised two-asset Merton model, which in turn generalises the model presented by Ang et al. This model involves an asset with shocks in its price (which we call price-illiquid), and an asset which can be traded only at random times (which we call trade-illiquid). From this model we shall then pose and solve an optimal portfolio construction and consumption problem. The presence of jumps in the price of the price-illiquid asset is modelled by exponential Lévy processes, and we will prove that the equation that determines the expected optimal utility is an integro-differential equation of Hamilton-Jacobi-Bellman kind. In order to treat the problem in a mathematically rigorous fashion and to also be as general as possible, we work in a more general framework than the Lévy one, that is we formulate the Hamilton-Jacobi-Bellman equation in the presence of Feller processes. For such processes, we study the respective semigroup operators and infinitesimal generators, which we then fully characterise in the special case of Lévy processes. The infinitesimal generator will be the main subject of our investigation, since it is the quantity that appears in the Hamilton-Jacobi-Bellman equation. After this theoretical study, we then numerically solve the equation we found and which, in turn, solves the optimal portfolio construction problem.
In questa tesi ci occupiamo di studiare il concetto illiquidità e il ruolo che gioca nel panorama finanziario e, in particolare, in problemi di costruzione ottima del portafoglio. Tra le possibili definizioni di illiquidità, seguiamo l’approccio di Kyle, per cui un asset è illiquido se il suo prezzo subisce variazioni istantanee (shocks) in tempi casuali oppure se non è possibile scambiare sul mercato tale asset quando lo si desidera, ma solo a tempi ben precisi, possibilmente anch’essi casuali. Applichiamo dunque questo contesto di illiquidità ad un modello di Merton a due asset generalizzato, che a sua volta generalizza il modello presentato da Ang e collaboratori. Tale modello prevede la presenza di un asset il cui prezzo subisce shock (che chiamiamo asset price-illiquid), e di un asset che può essere scambiato solo a tempi random (che chiamiamo asset trade-illiquid). Su tale modello poi impostermo e risolveremo un problema di costruzione ottima di portafoglio e di consumo. La presenza dei salti nell’asset trade-illiquid viene modellizzata tramite processi di Lévy esponenziali, e dimostriamo che l’equazione che determina l’utilità attesa ottima è una equazione integro-differenziale di tipo Hamilton-Jacobi-Bellman. Nell’ottica di trattare in modo matematicamente rigoroso e quanto più generale possibile il problema, lavoriamo in un contesto più generale di quello di Lévy, ovvero formuliamo l’equazione di Hamilton-Jacobi-Bellman in presenza di processi di Feller. Per tali processi studiamo i relativi operatori di semigruppo e i generatori infinitesimi, che poi caratterizziamo completamente nel caso particolare di processi di Lévy. Il generatore infinitesimo sarà il principale oggetto del nostro interessa, in quanto è la quantità che appare nella scrittura dell’equazione di Hamilton-Jacobi-Belmann. Dopo tale studio teorico, risolviamo numericamente l’equazione trovata, e quindi il problema di allocazione ottima del portafoglio.
Illiquidity and Lévy processes in optimal portfolio construction problems
Panone, Davide
2021/2022
Abstract
In this thesis we study the concept of illiquidity, and the role it plays in the financial scene and, in particular, in optimal portfolio construction problems. Among the possible definitions of illiquidity, we follow the approach of Kyle, according to which an asset is illiquid if either its price undergoes instantaneous variations (shocks) at random times or if it is not possible to trade such an asset on the market whenever one wishes to, but only at specific times, possibly random. We then apply this concept of illiquidity to a generalised two-asset Merton model, which in turn generalises the model presented by Ang et al. This model involves an asset with shocks in its price (which we call price-illiquid), and an asset which can be traded only at random times (which we call trade-illiquid). From this model we shall then pose and solve an optimal portfolio construction and consumption problem. The presence of jumps in the price of the price-illiquid asset is modelled by exponential Lévy processes, and we will prove that the equation that determines the expected optimal utility is an integro-differential equation of Hamilton-Jacobi-Bellman kind. In order to treat the problem in a mathematically rigorous fashion and to also be as general as possible, we work in a more general framework than the Lévy one, that is we formulate the Hamilton-Jacobi-Bellman equation in the presence of Feller processes. For such processes, we study the respective semigroup operators and infinitesimal generators, which we then fully characterise in the special case of Lévy processes. The infinitesimal generator will be the main subject of our investigation, since it is the quantity that appears in the Hamilton-Jacobi-Bellman equation. After this theoretical study, we then numerically solve the equation we found and which, in turn, solves the optimal portfolio construction problem.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Panone_Davide.pdf
Open Access dal 28/06/2023
Dimensione
4.97 MB
Formato
Adobe PDF
|
4.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/190772