Recently, there is emerging demand for safe and convenient conductive chargers, hence wire-less charging systems are predicted to be efficient and sufficient option for satisfying this demand whereas the maturity status of this technology that is accompanied with wide range of applications of wireless chargers, specifically within changing the trend in transportation toward electrified ones has induced change toward higher power, power density, modularity, and scalability of de-signs Various methods classified in various categories are used in such a technology. They can be categorized by either range or the physical principle it uses to transfer the electric energy. A com-parison between their advantages and disadvantages has been discussed in this work. In addition to increasing concerns for the safe and convenient power supply, there is a rapid-increasing interest in wireless power transfer (WPT) for industrial devices, consumer electronics, and electric vehicles (EVs). As the resonant circuit is one of the cores of both the near-field and far-field WPT systems, it is a pressing need for researchers to develop a high-efficiency high-frequency resonant circuit, especially for the mid-range near-field WPT system. The modern attempts in magnetic and capacitor couplers designs, compensation networks, power electronics converters, are tackled. Wireless charging systems are considered where serious variations in their designs and applications are highlighted. On that basis, the comparisons be-tween different solutions and design considerations are stated as the essential elements and tech-nology roadmap that will be necessary to support large-scale deployment of high-power wireless charging systems. While Resonant Inductive Power Transfer (RIPT) charging is a substantially resilient concept with the possibility of charging at any opportunity and is highly versatile for vehicles of all sizes. It faces some major problems, especially in regard to misalignment that may affect Mutual Induct-ance and Resonance Frequency, this work analyses this problem and the effect it may cause. Moreover, Resonant Converters has been categorised and illustrated in detail. Selecting the most useful one in the process, with a proposed modification on the topology and a tuning meth-od that they increase the efficiency of the conventional setting.
Recentemente è emersa una domanda di caricabatterie conduttivi sicuri e convenienti, per cui si prevede che i sistemi di ricarica senza fili siano un'opzione efficiente e sufficiente per soddisfare questa domanda, mentre lo stato di maturità di questa tecnologia, accompagnato da un'ampia gamma di applicazioni dei caricabatterie wireless, in particolare nell'ambito del cambiamento della tendenza dei trasporti verso quelli elettrificati, ha indotto un cambiamento verso una maggiore potenza, densità di potenza, modularità e scalabilità dei progetti. In questa tecnologia vengono utilizzati diversi metodi classificati in varie categorie. Possono es-sere classificati in base alla portata o al principio fisico utilizzato per trasferire l'energia elettrica. In questo lavoro è stato discusso un confronto tra i loro vantaggi e svantaggi. Oltre alle crescenti preoccupazioni per un'alimentazione sicura e conveniente, l'interesse per il trasferimento di energia senza fili (WPT) per i dispositivi industriali, l'elettronica di consumo e i vei-coli elettrici (EV) è in rapido aumento. Poiché il circuito risonante è uno dei fulcri dei sistemi WPT in campo vicino e in campo lontano, è urgente per i ricercatori sviluppare un circuito risonante ad alta efficienza e ad alta frequenza, soprattutto per il sistema WPT in campo vicino di fascia media. Vengono affrontati i moderni tentativi di progettazione di accoppiatori magnetici e condensa-tori, reti di compensazione e convertitori elettronici di potenza. Vengono presi in considerazione i sistemi di ricarica wireless, per i quali sono state evidenziate le gravi variazioni nei progetti e nelle applicazioni. Su questa base, il confronto tra le diverse soluzioni e le considerazioni progettuali so-no indicate come gli elementi essenziali e la roadmap tecnologica che sarà necessaria per suppor-tare la diffusione su larga scala dei sistemi di ricarica wireless ad alta potenza. La ricarica con trasferimento di potenza induttivo risonante (RIPT) è un concetto sostanzial-mente resiliente, con la possibilità di ricaricare in qualsiasi momento e altamente versatile per vei-coli di tutte le dimensioni. Il presente lavoro analizza questo problema e l'effetto che può avere sulla frequenza di risonanza e sull'induttanza reciproca. Inoltre, i convertitori risonanti sono stati classificati e illustrati in dettaglio. La selezione di quel-lo più utile è stata effettuata con una proposta di modifica della topologia e un metodo di regola-zione che aumenta l'efficienza dell'impostazione convenzionale.
Wireless power transfer methods
ABDELAZIZ, AHMED ABDELWAHID ABDEIMONIEN
2021/2022
Abstract
Recently, there is emerging demand for safe and convenient conductive chargers, hence wire-less charging systems are predicted to be efficient and sufficient option for satisfying this demand whereas the maturity status of this technology that is accompanied with wide range of applications of wireless chargers, specifically within changing the trend in transportation toward electrified ones has induced change toward higher power, power density, modularity, and scalability of de-signs Various methods classified in various categories are used in such a technology. They can be categorized by either range or the physical principle it uses to transfer the electric energy. A com-parison between their advantages and disadvantages has been discussed in this work. In addition to increasing concerns for the safe and convenient power supply, there is a rapid-increasing interest in wireless power transfer (WPT) for industrial devices, consumer electronics, and electric vehicles (EVs). As the resonant circuit is one of the cores of both the near-field and far-field WPT systems, it is a pressing need for researchers to develop a high-efficiency high-frequency resonant circuit, especially for the mid-range near-field WPT system. The modern attempts in magnetic and capacitor couplers designs, compensation networks, power electronics converters, are tackled. Wireless charging systems are considered where serious variations in their designs and applications are highlighted. On that basis, the comparisons be-tween different solutions and design considerations are stated as the essential elements and tech-nology roadmap that will be necessary to support large-scale deployment of high-power wireless charging systems. While Resonant Inductive Power Transfer (RIPT) charging is a substantially resilient concept with the possibility of charging at any opportunity and is highly versatile for vehicles of all sizes. It faces some major problems, especially in regard to misalignment that may affect Mutual Induct-ance and Resonance Frequency, this work analyses this problem and the effect it may cause. Moreover, Resonant Converters has been categorised and illustrated in detail. Selecting the most useful one in the process, with a proposed modification on the topology and a tuning meth-od that they increase the efficiency of the conventional setting.File | Dimensione | Formato | |
---|---|---|---|
Wireless Power Transfer Methods.docx
non accessibile
Dimensione
15.77 MB
Formato
Microsoft Word XML
|
15.77 MB | Microsoft Word XML | Visualizza/Apri |
Wireless Power Transfer Methods.pdf
accessibile in internet per tutti
Dimensione
4.86 MB
Formato
Adobe PDF
|
4.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/191802