Cryogenic propellants (LH2,LO2,CH4) have been identified as first-choice class of propellants for future deep space mission due to their high specific impulse, non toxicity and the possibility to produce them in-situ. However, due to the long term duration of these missions, numerous issues related to the necessity to store the propellants for a long period of time could arise. More specifically, the very low temperature at which this class of propellant need to be stored make the thermal control very challenging. Some form of parasitic heat will always infiltrate into the tank making the temperature rapidly increase and bringing the propellant to “boil-off” over time resulting in excessive pressure buildup, off-nominal propellant conditions for engine consumption, and propellant loss. For this reason some pressure control strategies are usually employed to decrease the pressure inside the tank. This reduction of the pressure could, however, generated some cavitation bubbles or can increase the size of bubbles that have formed due to heat penetration. These bubbles are particularly dangerous for the engine since at a bare minimum, a mixture of gas and liquid sent to the engine will cause combustion instabilities, and at worst cause complete engine failure. In this thesis the candidate will propose and analyze some 0-D mathematical model capable of representing the dynamic evolution of the thermodynamic state of the propellants for a self-pressurizing tank during both the pressure build up and the following depressurization phase. Then, an analysis on the growth of cryogenic propellant bubble will be carried out by numerically solving some ODEs capable of predicting the cryogenic bubble growth. This analysis will be carried out on all the three main cryogenic propellants but also on water and nitrogen. This choice is made to be able to compare them with fluids whose behaviour is well know in literature.
In tempi recenti, sempre più interesse è stato dato ai propellenti criogenici per future missioni spaziali, a causa delle loro ottime proprietà, come l' alto impulso specifico, la non tossicità e la possibilità di essere ottenuti in situ. In ogni caso, a causa della lunga durata di queste missioni, numerose problematiche possono verificarsi a causa relative alla necessità di conservare i propellenti per un lungo periodo di tempo. Infatti, in presenza di calore tali fluidi sono soggetti a elevata evaporazione, determinando in questo modo, pericolosi aumenti di pressione e perdita di carburante. Per questa ragione, alcune strategie di controllo vengono utilizzate col fine di ridurre la pressione all’ interno del serbatoio. Questa riduzione della pressione può generare alcune bolle or incrementare la dimensione di altre già presenti perché generate dal calore parassitario. Queste bolle sono particolarmente pericolose per i motori in quanto un miscuglio di vapore e liquido può determinare l’instabilità della combustione o in casi estremi un fallimento critico del sistema di propulsione. In questa tesi il candidato proporrà e analizzerà un modello macroscopico mono dimensionale capace di descrivere l’ evoluzione dinamica dello stato termodinamico di un serbatoio autogeno durante le fasi di pressurizzazione e depressurizzazione. In seguito ,un analisi microscopica sulla crescita di una bolla di propellente criogenico verrà messa in atto attraverso la soluzione numerica di alcuni modelli capaci di prevedere la crescita di tale bolla. Quest’ analisi verrà svolta sui tre principali propellenti criogenici ma anche su azoto e acqua. Questa scelta è finalizzata comparare tali fluidi con altri il cui comportamento è ben noto in letteratura.
Modeling of the thermodynamic evolution and bubble growth during the depressurization of a cryogenic propellant tank
SAVI SCARPONI, ANDREA
2021/2022
Abstract
Cryogenic propellants (LH2,LO2,CH4) have been identified as first-choice class of propellants for future deep space mission due to their high specific impulse, non toxicity and the possibility to produce them in-situ. However, due to the long term duration of these missions, numerous issues related to the necessity to store the propellants for a long period of time could arise. More specifically, the very low temperature at which this class of propellant need to be stored make the thermal control very challenging. Some form of parasitic heat will always infiltrate into the tank making the temperature rapidly increase and bringing the propellant to “boil-off” over time resulting in excessive pressure buildup, off-nominal propellant conditions for engine consumption, and propellant loss. For this reason some pressure control strategies are usually employed to decrease the pressure inside the tank. This reduction of the pressure could, however, generated some cavitation bubbles or can increase the size of bubbles that have formed due to heat penetration. These bubbles are particularly dangerous for the engine since at a bare minimum, a mixture of gas and liquid sent to the engine will cause combustion instabilities, and at worst cause complete engine failure. In this thesis the candidate will propose and analyze some 0-D mathematical model capable of representing the dynamic evolution of the thermodynamic state of the propellants for a self-pressurizing tank during both the pressure build up and the following depressurization phase. Then, an analysis on the growth of cryogenic propellant bubble will be carried out by numerically solving some ODEs capable of predicting the cryogenic bubble growth. This analysis will be carried out on all the three main cryogenic propellants but also on water and nitrogen. This choice is made to be able to compare them with fluids whose behaviour is well know in literature.| File | Dimensione | Formato | |
|---|---|---|---|
|
Executive_Summary (2).pdf
solo utenti autorizzati dal 20/09/2025
Descrizione: executive summary
Dimensione
482.81 kB
Formato
Adobe PDF
|
482.81 kB | Adobe PDF | Visualizza/Apri |
|
Tesi_definitiva (8).pdf
solo utenti autorizzati dal 22/09/2025
Descrizione: Tesi
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/192234