The building stock is responsible for 36% of the greenhouse gas emissions and 40% of the energy consumption, therefore there has been a lot of focus in the past years to retrofit the existing buildings in order to reduce their energy consumption. However, retrofits strongly depend on the climate the building is located in, and with the foreseen effects due to Climate change, there is a risk that most retrofit solutions done today will not be as efficient in the future. This paper seeks to retrofit an educational institution located in Milan, Italy, using the current climate and then assess the efficiency of the strategies adopted, in future climates considering different RCP scenarios. A site survey has been conducted to collect all the required data in order to start a modelling the building in IES-VE. The building has been retrofitted following a two-step retrofit, first by improving the envelope’s insulation and replacing the external windows, then adding indoor blinds, modelling a mechanical ventilation system with heat recovery in winter and natural ventilation in summer. Additionally, two different insulation thickness were compared, and two types of windows have been analyzed: a double-glazing window with high g-value and a double-glazing window with low-g value. After obtaining a good retrofit combination, future climate models were obtained using Meteonorm and implemented in IES-VE. An additional Life-cycle analysis was done using One Click LCA to understand the impact of the retrofit actions in terms of GWP. The results showed that a high g-value window coupled with standard insulation thickness, mechanical ventilation with heat recovery, internal blinds, and night cooling, yielded the best results in term of HDH and CDH that were reduced respectively by 70% and 80%. On another hand following an RCP 2.6, the results showed a slight increase of 20% of the HDH and 88% increase of CDH. However, considering an RCP 8.5, the CDH increased by 788% and HDH decreased by 46%. Hence, following the RCP2.6, the retrofit configuration employed will still be efficient in 80 years, while the RCP 8.5 shows that the retrofit intervention will lose its efficiency in less than 40 years – which is even less than the service life of a building. For what concerns the life-cycle analysis, results showed that the CO2 emissions and the social carbon cost, over a period of 50 years, are reduced by 500% in the retrofitted configuration compared to the baseline configuration.
Il patrimonio edilizio è responsabile del 36% delle emissioni di gas a effetto serra e del 40% del consumo energetico, pertanto negli ultimi anni è stata posta molta attenzione alla riqualificazione energetica del parco immobiliare esistente per ridurne l’impatto ambientale. Questi interventi, tuttavia, dipendono fortemente dal clima in cui l’edificio è ubicato e quindi, con gli effetti dovuti al cambiamento climatico, il rischio è quello di adottare oggi azioni che potrebbero rivelarsi non così efficienti in futuro. Il presente documento propone il progetto di riqualificazione di un istituto scolastico con sede a Milano, elaborato sulla base delle attuali condizioni climatiche e quindi valutando l’efficienza delle strategie adottate anche in un clima futuro, previsto da diversi scenari RCP. Un’attenta indagine il loco è stata condotta per raccogliere tutti i dati necessari al fine di realizzare un modello di simulazione del comportamento energetico dell’edificio in IES-VE il più possibile vicino al comportamento reale. Il processo di retrofit dell’edificio è stato articolato in due fasi: la prima vede il miglioramento dell'isolamento dell'involucro nonché la sostituzione degli infissi esterni mentre la seconda l’introduzione di sistemi di oscuramento interni e la modellazione di un sistema di ventilazione meccanica con recupero di calore in inverno e di ventilazione naturale in estate. In particolare, sono stati analizzati due tipi di infissi a doppio vetro: uno con alto fattore solare (g) e uno con basso valore di g . Dopo aver ottimizzato l’edificio per le condizioni attuali, futuri scenari climatici sono stati calcolati utilizzando Meteonorm e implementati in IES-VE. Inoltre è stata condotta un’analisi del ciclo di vita utilizzando One click LCA per valutare l'impatto delle azioni impiegate in termini di potenziale di riscaldamento globale (GWP). I risultati hanno dimostrato come la combinazione di un infisso con alto fattore solare (g) e di uno spessore standard dell’isolamento risulti la soluzione più efficiente; in più se abbinata ad una ventilazione meccanica con recupero di calore, alla presenza di tende interne e al raffreddamento notturno, si osserva la riduzione dell'HDH al 70% e dell’CDH all'80%. Se si considera lo scenario RCP 2.6, i risultati mostrato un leggero aumento del 20% dell'HDH e dell'88% del CDH. Tuttavia, seguendo un RCP 8.5, il CDH aumenta del 788% e l’ HDH diminuisce del 46%. Per concludere, seguendo lo scenario migliore, la strategia di riqualificazione adottata sarà ancora efficiente tra 80 anni, mentre lo scenario peggiore mostra che l'azione di retrofit perderà la sua efficienza in meno di 40 anni - meno della durata di un edificio. Per quanto riguarda l'analisi del ciclo di vita, i risultati hanno mostrato che le emissioni di CO2 e il “costo sociale delle emissioni“, in un periodo di 50 anni, sono ridotti del 500% considerando l’edificio riqualificato rispetto allo stato iniziale.
School energy retrofit : strategies and technologies in a climate change framework
HANNA, MAJD
2021/2022
Abstract
The building stock is responsible for 36% of the greenhouse gas emissions and 40% of the energy consumption, therefore there has been a lot of focus in the past years to retrofit the existing buildings in order to reduce their energy consumption. However, retrofits strongly depend on the climate the building is located in, and with the foreseen effects due to Climate change, there is a risk that most retrofit solutions done today will not be as efficient in the future. This paper seeks to retrofit an educational institution located in Milan, Italy, using the current climate and then assess the efficiency of the strategies adopted, in future climates considering different RCP scenarios. A site survey has been conducted to collect all the required data in order to start a modelling the building in IES-VE. The building has been retrofitted following a two-step retrofit, first by improving the envelope’s insulation and replacing the external windows, then adding indoor blinds, modelling a mechanical ventilation system with heat recovery in winter and natural ventilation in summer. Additionally, two different insulation thickness were compared, and two types of windows have been analyzed: a double-glazing window with high g-value and a double-glazing window with low-g value. After obtaining a good retrofit combination, future climate models were obtained using Meteonorm and implemented in IES-VE. An additional Life-cycle analysis was done using One Click LCA to understand the impact of the retrofit actions in terms of GWP. The results showed that a high g-value window coupled with standard insulation thickness, mechanical ventilation with heat recovery, internal blinds, and night cooling, yielded the best results in term of HDH and CDH that were reduced respectively by 70% and 80%. On another hand following an RCP 2.6, the results showed a slight increase of 20% of the HDH and 88% increase of CDH. However, considering an RCP 8.5, the CDH increased by 788% and HDH decreased by 46%. Hence, following the RCP2.6, the retrofit configuration employed will still be efficient in 80 years, while the RCP 8.5 shows that the retrofit intervention will lose its efficiency in less than 40 years – which is even less than the service life of a building. For what concerns the life-cycle analysis, results showed that the CO2 emissions and the social carbon cost, over a period of 50 years, are reduced by 500% in the retrofitted configuration compared to the baseline configuration.File | Dimensione | Formato | |
---|---|---|---|
2022_10_Majd_Hanna.pdf
accessibile in internet per tutti
Dimensione
6.17 MB
Formato
Adobe PDF
|
6.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/192275