In the last years, advanced fields like the Motorsport and Automotive industries have seen an important increasing use of composite materials in their applications, thanks to their exceptional combination of physical properties and low weight. Nowadays, exploiting composite in crash impact structures is revealing several potential- ities which engineers aim to study and predict. Their micro-mechanics involved during crashes is quite complex: there are a number of phenomena that evolve and interact, which hide behind the crashing behaviour observed at the global level. For this reason, seeking for models able to account in detail for all these complex phenomena, is a limiting factor to the spread of numerical simulations as reliable substitute to the experimental tests and prototypes development. In this Thesis, a numerical FEM model of the composite Rear Impact Absorbing Structure (RIAS) of Pagani Huayra R (C9TR) has been realised, with the final aim to match the impacting sledge deceleration profile obtained in the experimental crash test, performed according to LMPH 2020 regulations. The Abaqus model realised, adopts reasonable approximations in order to catch in the most accurate way the experimental trend, providing a macro-mechanical description of the material collapse while looking for a compromise between model’s simplicity and ac- curacy. In the reasons and motivations behind this Thesis, there isn’t just a scientific research interest. In fact, aspects like realisation time and costs typical of a worldwide company as Pagani, have been considered in the choices adopted. Good results are achieved by carefully calibrating the values of critical parameters used in the definition of the model, providing general understanding of their influence and a soild starting point, for future developments.
Negli ultimi anni si è visto in settori avanzati come il Motorsport ed Automotive, un crescente utilizzo ed interesse verso i materiali compositi, grazie alla loro eccezionale com- binazione di proprietà meccaniche e pesi ridotti. Al giorno d’oggi, l’applicazione dei compositi nelle strutture a prova d’urto, sta rivelando diverse potenzialità che gli ingegneri mirano a studiare e prevedere. La micromeccanica alla base dell’impatto di tali materiali che si cela al di sotto del comportamento macro- scopico, è piuttosto complessa, con svariati fenomeni che interagiscono fra loro. Queste ragioni costituiscono un fattore limitante alla diffusione delle simulazioni numeriche come sostitute di prove sperimentali ed attività di prototipazione. In questa Tesi è stato realizzato un modello numerico FEM della struttura di un assor- bitore d’impatto posteriore (RIAS) della Pagani Huayra R (C9TR), con l’obiettivo finale di eguagliare il profilo di decelerazione della slitta impattante, ottenuto nella prova di crash sperimentale realizzato in accordo la normativa LMPH 2020. Il modello Abaqus sviluppato adotta ragionevoli approssimazioni per cogliere i trend sper- imentali nel modo più accurato possibile, fornendo una descrizione macroscopica del com- portamento della parte e ricercando un compromesso tra semplicità ed accuratezza. Nelle ragioni e nelle motivazioni di questa Tesi non vi è infatti solo un puro interesse volto alla ricerca scientifica. Aspetti come tempi e costi di realizzazione tipici di un’azienda mondiale come Pagani, sono stati fattori determinanti nelle scelte adottate. Buoni risul- tati si ottengono calibrando accuratamente i valori dei parametri critici utilizzati nella definizione del modello, fornendo una comprensione generale della loro influenza, ed un terreno di partenza per sviluppi futuri.
Experimental analysis of a Le Mans prototype hypercar's crash box
Calgaro, Davide
2021/2022
Abstract
In the last years, advanced fields like the Motorsport and Automotive industries have seen an important increasing use of composite materials in their applications, thanks to their exceptional combination of physical properties and low weight. Nowadays, exploiting composite in crash impact structures is revealing several potential- ities which engineers aim to study and predict. Their micro-mechanics involved during crashes is quite complex: there are a number of phenomena that evolve and interact, which hide behind the crashing behaviour observed at the global level. For this reason, seeking for models able to account in detail for all these complex phenomena, is a limiting factor to the spread of numerical simulations as reliable substitute to the experimental tests and prototypes development. In this Thesis, a numerical FEM model of the composite Rear Impact Absorbing Structure (RIAS) of Pagani Huayra R (C9TR) has been realised, with the final aim to match the impacting sledge deceleration profile obtained in the experimental crash test, performed according to LMPH 2020 regulations. The Abaqus model realised, adopts reasonable approximations in order to catch in the most accurate way the experimental trend, providing a macro-mechanical description of the material collapse while looking for a compromise between model’s simplicity and ac- curacy. In the reasons and motivations behind this Thesis, there isn’t just a scientific research interest. In fact, aspects like realisation time and costs typical of a worldwide company as Pagani, have been considered in the choices adopted. Good results are achieved by carefully calibrating the values of critical parameters used in the definition of the model, providing general understanding of their influence and a soild starting point, for future developments.File | Dimensione | Formato | |
---|---|---|---|
2022_10_Calgaro.pdf
non accessibile
Dimensione
17.66 MB
Formato
Adobe PDF
|
17.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/192396