The increasing energy demand caused by the exponential population growth is pushing our society towards an inevitable environmental crisis. New solutions and greener energy sources are needed. Organic Rankine Cycles are a viable option, these systems have one of the greatest potential of recovering heat waste and turning it into electricity. Special needs of compactness and reduced weight leads to lower the stage numbers and thus in most cases to the acceptance of a highly supersonic first stator. The additional criticality of higher molecular complexity rises loss even further causing the supersonic expander to account for two-thirds of the fluid-dynamic losses in high temperature ORC turbines. Therefore, the overall performance of the stator vanes mainly depends on their design. Currently, Deych’s method is the only one available and adopted in common practice to estimate the preliminary DoD for a stator vane operating in transonic/supersonic flow conditions. This work concerns an investigation about the accuracy and correctness of Deych’s law not only for simple flows as air but also for non-ideal compressible ones as MM. The aim is also to evaluate the influence on loss of both Z0 and γ. The CFD investigation was based on a comparison between losses in convergent and convergent-divergent geometries. New design guide lines were developed in order to base the profile design on three different similarity parameters ( σ, tSratio and Re) kept constant in all cases. The analysis shows that the Deych’s law does not provide enough accuracy in the performance prediction and that a new variable is needed to discern our fluids both on the basis of γ and Z0 at the same time. F and L are the two identified parameters that allow us to compare loss independently from the fluid. Therefore loss results as a monotonically decreasing function of L for all supersonic Mach numbers.
La crescente domanda di energia causata dalla crescita esponenziale della popolazione sta spingendo la nostra società verso un'inevitabile crisi ambientale. Sono necessarie nuove soluzioni e fonti energetiche più ecologiche. I cicli Rankine organici sono una possibile strada: il loro grande potenziale è che possono recuperare il calore scartato e trasformarlo in elettricità. Compattezza e peso ridotto spingono alla riduzione del numero di stadi e quindi ad avere un primo statore altamente supersonico. Inoltre la maggiore complessità molecolare dei fluidi impiegati aumenta ulteriormente le perdite facendo sì che lo statore supersonico causi due terzi delle perdite fluidodinamiche nelle turbine ORC. Pertanto, l'efficienza dello statore dipende principalmente dal suo design e progettazione. Attualmente, il metodo di Deych è l'unico disponibile e adottato nella pratica comune per stimare la DoD preliminare di una paletta statorica in condizioni di flusso transonico/supersonico. Questo lavoro indaga l'affidabilità della legge di Deych non solo per flussi ideali, ma anche per quelli organici complessi non-ideali. Un ulteriore obiettivo è anche quello di valutare la dipendenza delle perdite sia da Z0 che da γ . L'indagine si è basata sul confronto tra le perdite in geometrie convergenti e convergenti-divergenti attraverso simulazioni CFD. Sono state sviluppate nuove linee guida di progettazione che permettono di mantenere costanti tre diversi parametri di similitudine (σ, tSratio and Re) durante tutto il processo di design di una paletta statorica. La ricerca mostra che la legge di Deych non fornisce sufficiente accuratezza nella previsione delle prestazioni, Inoltre è necessaria una nuova quantità in grado di distinguere allo stesso tempo i fluidi sia sulla base di γ che di Z0 . F e L sono i due parametri identificati che ci permettono di comparare le perdite indipendentemente dal fluido. In conclusione, le perdite fluidoninamiche risultano essere una funzione monotona decrescente di F.
Optimal shape for transonic and supersonic stator vanes operating with fluids made of complex molecules in unconventional turbines
Bonazzi, Federico
2021/2022
Abstract
The increasing energy demand caused by the exponential population growth is pushing our society towards an inevitable environmental crisis. New solutions and greener energy sources are needed. Organic Rankine Cycles are a viable option, these systems have one of the greatest potential of recovering heat waste and turning it into electricity. Special needs of compactness and reduced weight leads to lower the stage numbers and thus in most cases to the acceptance of a highly supersonic first stator. The additional criticality of higher molecular complexity rises loss even further causing the supersonic expander to account for two-thirds of the fluid-dynamic losses in high temperature ORC turbines. Therefore, the overall performance of the stator vanes mainly depends on their design. Currently, Deych’s method is the only one available and adopted in common practice to estimate the preliminary DoD for a stator vane operating in transonic/supersonic flow conditions. This work concerns an investigation about the accuracy and correctness of Deych’s law not only for simple flows as air but also for non-ideal compressible ones as MM. The aim is also to evaluate the influence on loss of both Z0 and γ. The CFD investigation was based on a comparison between losses in convergent and convergent-divergent geometries. New design guide lines were developed in order to base the profile design on three different similarity parameters ( σ, tSratio and Re) kept constant in all cases. The analysis shows that the Deych’s law does not provide enough accuracy in the performance prediction and that a new variable is needed to discern our fluids both on the basis of γ and Z0 at the same time. F and L are the two identified parameters that allow us to compare loss independently from the fluid. Therefore loss results as a monotonically decreasing function of L for all supersonic Mach numbers.File | Dimensione | Formato | |
---|---|---|---|
2022_10_Bonazzi_02.pdf
accessibile in internet per tutti
Descrizione: Testo Tesi
Dimensione
7.48 MB
Formato
Adobe PDF
|
7.48 MB | Adobe PDF | Visualizza/Apri |
2022_10_Bonazzi_01.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
704.32 kB
Formato
Adobe PDF
|
704.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/193486