Fiber Reinforced Polymers offer high stiffness and low density resulting in some of the highest achievable specific elastic moduli and tensile strengths among structural materials. These desirable properties make them suitable for applications such as aero-structures, spacecraft, motorsports, high specification sports equipment, where ultimate mechanical performance and lowest possible weight are crucial. Besides their high strength, carbon/epoxy composites gener- ally exhibit unfavourable sudden and brittle failure without sufficient warning and residual integrity, which currently limits their use in safety critical applica- tions. The lack of ductility of such composites can be overcome by hybridisation. Hybridisation tends to improve composite properties by acting either on the overall mechanical properties or on the damage propagation mechanisms leading to failure. Unidirectional (UD) fiber reinforced hybrid composites have complex failure mechanisms including multiple interacting damage modes, such as ply fragmentation and interface delamination. To study the behaviour of UD hybrid composites in different load and boundary conditions predictive numerical mod- els are required. Aim of this study is to simulate the damage evolution in unidi- rectional hybrid composites by finite element models. Simple interlayer structure was used with low strain material sandwiched by high strain one. The damage development is modelled by two sets of cohesive elements, (i) embedded in the low strain carbon layer for modelling carbon fibre failure and (ii) at the ply- interface to capture delamination. The proposed model is validated against ex- perimental and numerical references. This gives a useful tool for the achieve- ment of accurate designs of the material and control of the failure mechanisms in UD hybrid composites. Thereby, the model can provide damage mode map by adjusting geometrical parameters. However, the criterion to distinguish the prevailing damage mechanism is still topic of investigation.
I materiali compositi in fibra di carbonio si caratterizzano per la loro bassa densità rispetto alle prestazioni meccaniche. Le loro proprietà meccaniche li ren- dono candidati ideali per applicazioni dove la resistenza meccanica e la legge- rezza della struttura sono determinanti (aerospaziale, automobilistico, navale, at- trezzature sportive). Nonostante queste caratteristiche, i materiali compositi in fibra di carbonio sono fragili, il che ne limita l'uso. Per evitare rotture improv- vise, alcune applicazioni utilizzano fattori di sicurezza elevati che portano a per- dere il guadagno del rapporto resistenza/peso dei materiali compositi rispetto ai metalli. La mancanza di duttilità dei materiali compositi in fibra di carbonio può essere compensata da strategie di ibridazione in cui materiali diversi vengono uniti per formare un unico laminato ibrido. L'obiettivo primario dell'ibridazione è migliorare le proprietà meccaniche della struttura agendo sulle proprietà mec- caniche o sui meccanismi di rottura. I materiali compositi ibridi in fibra di car- bonio unidirezionale (UD) hanno meccanismi di rottura complessi. Diverse mo- dalità interagiscono come la frammentazione translaminare e la delaminazione dell'interfaccia tra due strati. Per studiare il comportamento dei compositi ibridi UD è necessario una accurata modellazione numerica. Lo scopo di questo studio è simulare l'evoluzione del danneggiamento in compositi ibridi UD mediante un modello agli elementi finiti. La modellazione della rottura avviene mediante l'u- tilizzo di elementi coesivi. Gli elementi sono posizionati all'interno strati per si- mulare la frattura intralaminare. Altri elementi coesivi sono utilizzati per simu- lare la delaminazione. Il modello proposto è validato con risultati sperimentali e numerici. Ciò fornisce uno strumento utile per la progettazione accurata del ma- teriale e il controllo dei meccanismi di rottura nei compositi ibridi UD. Il mo- dello può fornire una mappa delle modalità di danno in funzione di parametri geometrici. Tuttavia, il criterio per distinguere il meccanismo di danno preva- lente è ancora oggetto di studio.
Damage modelling of uni-directional fiber hybrid composites
OLLIC, AMAURY HUBERT ANDRE
2021/2022
Abstract
Fiber Reinforced Polymers offer high stiffness and low density resulting in some of the highest achievable specific elastic moduli and tensile strengths among structural materials. These desirable properties make them suitable for applications such as aero-structures, spacecraft, motorsports, high specification sports equipment, where ultimate mechanical performance and lowest possible weight are crucial. Besides their high strength, carbon/epoxy composites gener- ally exhibit unfavourable sudden and brittle failure without sufficient warning and residual integrity, which currently limits their use in safety critical applica- tions. The lack of ductility of such composites can be overcome by hybridisation. Hybridisation tends to improve composite properties by acting either on the overall mechanical properties or on the damage propagation mechanisms leading to failure. Unidirectional (UD) fiber reinforced hybrid composites have complex failure mechanisms including multiple interacting damage modes, such as ply fragmentation and interface delamination. To study the behaviour of UD hybrid composites in different load and boundary conditions predictive numerical mod- els are required. Aim of this study is to simulate the damage evolution in unidi- rectional hybrid composites by finite element models. Simple interlayer structure was used with low strain material sandwiched by high strain one. The damage development is modelled by two sets of cohesive elements, (i) embedded in the low strain carbon layer for modelling carbon fibre failure and (ii) at the ply- interface to capture delamination. The proposed model is validated against ex- perimental and numerical references. This gives a useful tool for the achieve- ment of accurate designs of the material and control of the failure mechanisms in UD hybrid composites. Thereby, the model can provide damage mode map by adjusting geometrical parameters. However, the criterion to distinguish the prevailing damage mechanism is still topic of investigation.File | Dimensione | Formato | |
---|---|---|---|
DAMAGE MODELLING OF UNI-DIRECTIONAL FIBER HYBRID COMPOSITES - A.OLLIC.pdf
accessibile in internet per tutti
Dimensione
7.84 MB
Formato
Adobe PDF
|
7.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/195194