The thesis aims to analyze one of the most important phases of supply chain planning, that is the aim of presenting the increasing demand and the value for the available resources, within unstable and uncertain business contexts. Over the years, many studies have focused on the topic of demand forecasting and the role it plays in the various decision-making processes: this issue is gaining more and more prominence given the new challenges that are arising both upstream and downstream of the supply chain. The discussion therefore focuses on the topic of demand forecasting and investigates the impact that an unstable context, such as VUCA (Volatility, Uncertainty, Complexity and Ambiguity), has on the forecasting process and how, according to the thesis presented, it could be solved through a redesign of the process itself. After the presentation of the context in which the companies operate nowadays, defined VUCA by the researchers, the main elements of this environment that influence the forecast results, will be defined. Once these elements are understood, an in-depth analysis will be conducted on demand forecasting and in particular the demand forecasting process, so as to define, thanks to important contributions provided by the literature, the most recurrent phases that structure this process. Through the Winelivery case study, the results of the research will be presented and finally the forecasting process will be redesigned, which aims to collect, map and systematically monitor the data deriving from the environment, sources of instability, uncertainty and complexity. By combining steps consolidated over the years, with new steps deriving from technological and managerial intuitions, the result was to provide a business tool capable of giving a complete view to the manager to make decisions of high corporate impact.
La tesi presentata si pone l'obiettivo di analizzare una delle fasi più importanti del supply chain planning, ovvero il demand forecasting, al fine di ottimizzare e aumentare il valore per le risorse a disposizione, all’interno di contesti aziendali instabili e incerti. Nel corso degli anni, molti studi si sono concentrati sul tema della previsione della domanda e sul ruolo che svolge nei diversi processi decisionali: oggi questa tematica sta assumendo sempre più risalto date le nuove sfide che stanno sorgendo sia a monte che a valle della catena. La trattazione si concentra quindi sul tema della previsione della domanda e indaga l'impatto che un contesto instabile, definito come VUCA (Volatility, Uncertainty, Complexity e Ambiguity), ha sul processo di previsione della domanda e come, secondo la tesi presentata, potrebbe essere risolto attraverso una riprogettazione del processo stesso. Dopo aver presentato il contesto in cui ci muoviamo, definito VUCA dai ricercatori si andranno ad identificare gli elementi di questo ambiente vanno ad influire nei risultati previsionali. Una volta compresi questi elementi, un’analisi approfondita verrà condotta sul demand forecasting e in particolare il demand forecasting process, così da identificare, grazie a importanti contributi forniti dalla letteratura, le fasi più ricorrenti che strutturano questo processo. Per concludere attraverso il caso studio Winelivery, verranno presentati i risultati della ricerca e verrà esposto il nuovo processo di ridisegnato che mira a raccogliere, mappare e monitorare in maniera sistematica i dati derivanti dall'ambiente fonti di instabilità, incertezza e complessità. Accostando step consolidati negli anni, con nuovi step derivanti da intuizioni tecnologiche e manageriali, il risultato è stato quello di fornire uno strumento aziendale in grado dare una visuale completa al manager per prendere decisioni di alto impatto aziendale.
Demand forecasting process in VUCA context : winelivery case study
LEGGIO, LORENZA
2021/2022
Abstract
The thesis aims to analyze one of the most important phases of supply chain planning, that is the aim of presenting the increasing demand and the value for the available resources, within unstable and uncertain business contexts. Over the years, many studies have focused on the topic of demand forecasting and the role it plays in the various decision-making processes: this issue is gaining more and more prominence given the new challenges that are arising both upstream and downstream of the supply chain. The discussion therefore focuses on the topic of demand forecasting and investigates the impact that an unstable context, such as VUCA (Volatility, Uncertainty, Complexity and Ambiguity), has on the forecasting process and how, according to the thesis presented, it could be solved through a redesign of the process itself. After the presentation of the context in which the companies operate nowadays, defined VUCA by the researchers, the main elements of this environment that influence the forecast results, will be defined. Once these elements are understood, an in-depth analysis will be conducted on demand forecasting and in particular the demand forecasting process, so as to define, thanks to important contributions provided by the literature, the most recurrent phases that structure this process. Through the Winelivery case study, the results of the research will be presented and finally the forecasting process will be redesigned, which aims to collect, map and systematically monitor the data deriving from the environment, sources of instability, uncertainty and complexity. By combining steps consolidated over the years, with new steps deriving from technological and managerial intuitions, the result was to provide a business tool capable of giving a complete view to the manager to make decisions of high corporate impact.| File | Dimensione | Formato | |
|---|---|---|---|
|
Lorenza Leggio - 10541484943981.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Demand Forecasting process in VUCA context
Dimensione
3.53 MB
Formato
Adobe PDF
|
3.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/195223