The kinematic interaction between caisson foundations and adjacent soils has proven beneficial for the performance of bridge piers subjected to seismic actions. Furthermore, the temporal attainment of bearing capacity can limit the inertial forces transmitted to the superstructure, yet inducing large and permanent displacements. Recently, numerical analyses and centrifuge testing have been conducted to assess the performance of bridge pier systems. In this Thesis, the centrifuge experiments on a deck-pier-caisson system model performed by Gaudio et al. (2022) have been exploited. The system was embedded in a typical alluvial deposit and subjected to different earthquakes. Two scenarios (soft and very soft clays below the sand layer) were considered to evaluate the effect of the development of plastic mechanisms in the foundation soils. The results from these experiments showed that high energy dissipation is developed when reaching the soil resistance, hence protecting the pier-deck system from excessive inertial actions. The goal of this Thesis is to numerically reproduce the conditions of the centrifuge tests and simulate the experimental results using 3D non-linear Finite Element analyses. The numerical results at the far field show differences with respect to the experimental ones for a moderate input motion, mainly due to the stiffer response of the superficial sand layer. However, when the kinematic interaction is considered, the agreement between numerical and experimental results improves considerably. A better agreement between numerical and experimental results is finally obtained for the strong earthquake, both for the free field and for the structure.
L'interazione cinematica tra i pozzi di fondazione e i terreni adiacenti si è dimostrata vantaggiosa per le prestazioni delle pile dei ponti soggette ad azioni sismiche. Il raggiungimento temporale della capacità portante può limitare le forze inerziali trasmesse alla sovrastruttura, ma anche indurre spostamenti permanenti di entità significativa. Recentemente, sono state condotte diverse analisi numeriche e prove di laboratorio in centrifuga per valutare le prestazioni dei sistemi di pile da ponte. In questa Tesi, sono stati presi in considerazione i risultati sperimentali in centrifuga su un modello di sistema impalcato-pila-pozzo presentati da Gaudio et al (2022). Il sistema è stato inserito in un tipico deposito alluvionale e sottoposto a diverse sollecitazioni sismiche. Sono stati considerati due scenari (argille “soft” e “very soft” al di sotto dello strato di sabbia) per determinare l'effetto dell'attivazione di meccanismi plastici nei terreni di fondazione. I risultati di questi esperimenti hanno mostrato che, a seguito del raggiungimento della resistenza del terreno, si ha un'elevata dissipazione di energia, che a sua volta protegge la sovrastruttura da eccessive azioni inerziali. L'obiettivo di questa tesi è riprodurre numericamente le condizioni delle prove in centrifuga e simulare i risultati sperimentali utilizzando analisi 3D non lineari agli elementi finiti. I risultati numerici in campo lontano mostrano differenze rispetto a quelli ottenuti sperimentalmente per un sisma moderato, a causa della differente rigidezza dello strato di sabbia superficiale. Tuttavia, quando si considera l’interazione cinematica, l’accordo tra i risultati numerici e sperimentali migliora notevolmente. Infine, una migliore corrispondenza tra risultati numerici e sperimentali si riscontra per il terremoto forte, sia in campo libero che con riferimento alla risposta strutturale.
Numerical simulation of dynamic centrifuge tests on the seismic performance of caisson foundation supporting bridge piers
Murillo Roldos, Fabrizio Jose
2021/2022
Abstract
The kinematic interaction between caisson foundations and adjacent soils has proven beneficial for the performance of bridge piers subjected to seismic actions. Furthermore, the temporal attainment of bearing capacity can limit the inertial forces transmitted to the superstructure, yet inducing large and permanent displacements. Recently, numerical analyses and centrifuge testing have been conducted to assess the performance of bridge pier systems. In this Thesis, the centrifuge experiments on a deck-pier-caisson system model performed by Gaudio et al. (2022) have been exploited. The system was embedded in a typical alluvial deposit and subjected to different earthquakes. Two scenarios (soft and very soft clays below the sand layer) were considered to evaluate the effect of the development of plastic mechanisms in the foundation soils. The results from these experiments showed that high energy dissipation is developed when reaching the soil resistance, hence protecting the pier-deck system from excessive inertial actions. The goal of this Thesis is to numerically reproduce the conditions of the centrifuge tests and simulate the experimental results using 3D non-linear Finite Element analyses. The numerical results at the far field show differences with respect to the experimental ones for a moderate input motion, mainly due to the stiffer response of the superficial sand layer. However, when the kinematic interaction is considered, the agreement between numerical and experimental results improves considerably. A better agreement between numerical and experimental results is finally obtained for the strong earthquake, both for the free field and for the structure.| File | Dimensione | Formato | |
|---|---|---|---|
|
17092022_Thesis_952612_FMR_v2.pdf
non accessibile
Descrizione: Thesis Final Version
Dimensione
7.79 MB
Formato
Adobe PDF
|
7.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/195586