The accumulation of heavy metals in the soil is a topic of particular relevance due to their toxicity, abundance and retention time in soil which is longer than in other compartments of the biosphere. Nowadays, soil quality has taken on centrality in several human activities, so much so that, over the years, various remediation technologies have been developed whose aim is to reduce the toxicity of soils contaminated by metals, thus preventing risks to human health and the environment. In particular, over the last thirty years, many laboratories have developed procedures, such as for example sequential extraction, which make it possible to determine the chemical form of the heavy metal species present in a soil, in order to study any phenomena of mobilization and environmental pathways. It was therefore necessary to compare the information obtained from the characterization and the extraction procedure with respect to contaminated soils, pre and post oxidation treatment, to study the mobility of heavy metals. Through the application of the BCR (Bureau Communautaire de Référence) three-phase sequential extraction procedure, this study elaborated the information regarding Ni, Cu, Zn, As and Pb, for four contaminated soil samples from the Po Valley. The extraction of metals is studied as a sequence of different doses of extracting solvents which allow the chemical forms of the metals present to be divided into four different fractions (exchangeable, reducible, oxidizable and residual). The effect of the oxidation treatment involves a new distribution of the metals in the various fractions. The result is that Ni and Cu are the most remarkable examples as they explain the redistribution of the forms of these two metals in the different phases, starting from the "immobilized" phase, the residual fraction, to more mobile phases, up to the exchangeable fraction. The same effect is negligible for the metals As and Pb, while, in the case of Zn, the reducible fraction does not appear particularly affected. The experimental data was then modelled using surface complexation models in a geochemical model, Visual MINTEQ, of Hydro Ferric Oxide (HFO) and Charge Distribution MUlti-Site Ion Complexation (CD-MUSIC) considering the adsorption of the ionic form of heavy metals on iron oxides and hydroxides and the Stockholm Humic Model (SHM) and fixed charge site model considering the adsorption of metal ions to soil organic matter and clay, respectively. In particular, the modelling method of this study introduces several assumptions related to dissolved organic carbon and iron oxides and hydroxides to account for the amount of organic matter released from the soil and iron hydroxides adsorbed on soil minerals. Overall, the results indicate that, under defined conditions, Cu is the most oxidizable metal compared to the others studied and that Ni hardly binds to iron oxides.
L'accumulo dei metalli pesanti nel suolo è una tematica di particolare rilevanza a causa della tossicità, abbondanza e tempo di ritenzione nel suolo degli stessi che risulta più lungo rispetto ad altri compartimenti della biosfera. Oggigiorno, la qualità dei suoli ha assunto una centralità nelle diverse attività umane, tanto che, negli anni, sono state sviluppate diverse tecnologie di risanamento che puntano a ridurre la tossicità dei suoli contaminati da metalli prevenendo, pertanto, i rischi sulla salute umana e ambientale. In particolare, negli ultimi trent’anni, molti laboratori hanno messo a punto procedure, quali ad esempio l’estrazione sequenziale, che consentono di determinare la forma chimica delle specie di metalli pesanti presenti in un terreno, al fine di studiarne gli eventuali fenomeni di mobilizzazione e percorsi ambientali. È stato dunque necessario confrontare le informazioni ottenute dalla caratterizzazione e dalla procedura di estrazione rispetto ai suoli contaminati, pre e post trattamento di ossidazione, per studiare la mobilità dei metalli pesanti. Attraverso l’applicazione della procedura di estrazione sequenziale a tre fasi BCR (Bureau Communautaire de Référence), questo studio ha elaborato le informazioni riguardanti Ni, Cu, Zn, As e Pb, per quattro campioni di suolo contaminato provenienti dalla Pianura Padana. L'estrazione dei metalli è studiata come una sequenza di diverse dosi di solventi estrattori che consentono di suddividere le forme chimiche dei metalli presenti in quattro diverse frazioni (scambiabile, riducibile, ossidabile e residua). L’effetto del trattamento di ossidazione comporta una nuova distribuzione dei metalli nelle varie frazioni. Ciò che risulta è che Ni e Cu sono gli esempi di maggior rilievo in quanto spiegano la ridistribuzione delle forme di questi due metalli nelle diverse fasi, a partire dalla fase "immobilizzata", frazione residua, a fasi più mobili, fino alla frazione scambiabile. Lo stesso effetto risulta trascurabile per i metalli As e Pb, mentre, nel caso dello Zn, la frazione riducibile non appare particolarmente interessata. I dati sperimentali sono stati quindi modellati utilizzando modelli di complessazione superficiale in un modello geochimico, Visual MINTEQ, di Hydro Ferric Oxide (HFO) e Charge Distribution MUlti-Site Ion Complexation (CD-MUSIC) considerando l'adsorbimento della forma ionica di metalli pesanti su ossidi e idrossidi di ferro e il modello Stockholm Humic Model (SHM) e del sito di carica fissa tenendo conto dell'adsorbimento degli ioni metallici alla materia organica del suolo e all'argilla, rispettivamente. In particolare, il metodo di modellizzazione di questo studio introduce diverse ipotesi relative al carbonio organico disciolto e agli ossidi e idrossidi di ferro per tenere conto della quantità di sostanza organica rilasciata dal suolo e idrossidi di ferro adsorbiti sui minerali del suolo. Complessivamente, i risultati indicano che, secondo condizioni definite, il Cu è il metallo più ossidabile rispetto agli altri studiati e che il Ni si lega difficilmente agli ossidi di ferro.
Heavy metals mobility in soils: comparison of soil samples before and after an oxidation treatment
Benzoni, Yuri
2021/2022
Abstract
The accumulation of heavy metals in the soil is a topic of particular relevance due to their toxicity, abundance and retention time in soil which is longer than in other compartments of the biosphere. Nowadays, soil quality has taken on centrality in several human activities, so much so that, over the years, various remediation technologies have been developed whose aim is to reduce the toxicity of soils contaminated by metals, thus preventing risks to human health and the environment. In particular, over the last thirty years, many laboratories have developed procedures, such as for example sequential extraction, which make it possible to determine the chemical form of the heavy metal species present in a soil, in order to study any phenomena of mobilization and environmental pathways. It was therefore necessary to compare the information obtained from the characterization and the extraction procedure with respect to contaminated soils, pre and post oxidation treatment, to study the mobility of heavy metals. Through the application of the BCR (Bureau Communautaire de Référence) three-phase sequential extraction procedure, this study elaborated the information regarding Ni, Cu, Zn, As and Pb, for four contaminated soil samples from the Po Valley. The extraction of metals is studied as a sequence of different doses of extracting solvents which allow the chemical forms of the metals present to be divided into four different fractions (exchangeable, reducible, oxidizable and residual). The effect of the oxidation treatment involves a new distribution of the metals in the various fractions. The result is that Ni and Cu are the most remarkable examples as they explain the redistribution of the forms of these two metals in the different phases, starting from the "immobilized" phase, the residual fraction, to more mobile phases, up to the exchangeable fraction. The same effect is negligible for the metals As and Pb, while, in the case of Zn, the reducible fraction does not appear particularly affected. The experimental data was then modelled using surface complexation models in a geochemical model, Visual MINTEQ, of Hydro Ferric Oxide (HFO) and Charge Distribution MUlti-Site Ion Complexation (CD-MUSIC) considering the adsorption of the ionic form of heavy metals on iron oxides and hydroxides and the Stockholm Humic Model (SHM) and fixed charge site model considering the adsorption of metal ions to soil organic matter and clay, respectively. In particular, the modelling method of this study introduces several assumptions related to dissolved organic carbon and iron oxides and hydroxides to account for the amount of organic matter released from the soil and iron hydroxides adsorbed on soil minerals. Overall, the results indicate that, under defined conditions, Cu is the most oxidizable metal compared to the others studied and that Ni hardly binds to iron oxides.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Benzoni.pdf
solo utenti autorizzati dal 01/12/2023
Dimensione
3.1 MB
Formato
Adobe PDF
|
3.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/195962