This thesis presents a numerical study of the behavior of fiber-reinforced concrete in comparison with plain concrete. The overall aim of the work is to evaluate the capabilities of different constitutive models and numerical methods for predicting structural responses, with a particular focus on fracture behavior. The approaches considered in this study include continuum-based finite element analysis using plasticity models and discrete-crack modeling using the cohesive zone concept in the framework of the combined finite-discrete element method. The literature survey that preceded the work helped recognize major differences in mechanical properties between plain concrete and fiber-reinforced concrete and, more importantly, identify some mainstream approaches to accounting for these differences as well as incorporating similarities in numerical simulations. Three widely used constitutive models for plain concrete are chosen to investigate their suitability for simulating fiber-reinforced concrete. The first one is the classical Drucker-Prager model, which is a standard elasto-plasticity model with relatively simple concepts and formulation. The second one is a plastic-damage model, which is formulated using both the theory of plasticity and the concept of fracture-energy-based damage in continuum damage mechanics. The third one is the so-called cohesive zone model, which assumes the initiation and progressive opening of a crack is governed by traction-separation relations and allows for the representation of discrete cracks. The numerical implementation and application of these constitutive models are the core parts of the work, for which the formulations and corresponding algorithms of them are studied in detail. The Drucker-Prager model and the cohesive crack model are implemented via a generic finite element coding system called Firedrake. The plastic-damage model, on the other hand, is directly used for simulations in the commercial finite element software ABAQUS, in which the model is named Concrete Damage Plasticity. Different model parameters are chosen for plain concrete and fiber-reinforced concrete in order to highlight the major difference existing in their post-yielding or post-cracking behavior. The specific loading cases examined in the simulations include the uniaxial tensile/compressive tests, the three-point bending test on a notched beam, and a tunnel lining subjected to in-situ earth pressures. The obtained numerical results are discussed and compared in terms of the constitutive approaches adopted as well as the different materials assumed.
Questa tesi presenta uno studio numerico del comportamento del calcestruzzo fibrorinforzato rispetto al calcestruzzo normale. Lo scopo generale del lavoro è valutare le capacità di diversi modelli costitutivi e metodi numerici per la previsione delle risposte strutturali, con particolare attenzione al comportamento a frattura. Gli approcci considerati in questo studio includono l'analisi degli elementi finiti basata sul continuo utilizzando modelli di plasticità e la modellazione di fessure discrete utilizzando il concetto di zona coesiva nell'ambito del metodo combinato di elementi finiti-discreti. L'analisi della letteratura che ha preceduto il lavoro ha aiutato a riconoscere le principali differenze nelle proprietà meccaniche tra il calcestruzzo semplice e il calcestruzzo fibrorinforzato e, cosa più importante, a identificare alcuni approcci tradizionali per tenere conto di queste differenze e incorporare somiglianze nelle simulazioni numeriche. Sono stati scelti tre modelli costitutivi ampiamente utilizzati per il calcestruzzo semplice per studiarne l'idoneità a simulare il calcestruzzo fibrorinforzato. Il primo è il classico modello di Drucker-Prager, che è un modello di elastoplasticità standard con concetti e formulazione relativamente semplici. Il secondo è un modello di danno plastico, formulato utilizzando sia la teoria della plasticità che il concetto di danno basato sull'energia di frattura nella meccanica del danno continuo. Il terzo è il cosiddetto modello a zona coesiva, che assume che l'innesco e la progressiva apertura di una fessura sia governato da relazioni trazione-separazione e consente la rappresentazione di fessure discrete. L'implementazione numerica e l'applicazione di questi modelli costitutivi sono le parti fondamentali del lavoro, per le quali vengono studiate in dettaglio le formulazioni e gli algoritmi corrispondenti. Il modello di Drucker-Prager e il modello di cricca coesiva sono implementati tramite un generico sistema di codifica ad elementi finiti chiamato Firedrake. Il modello di danno plastico, d'altra parte, viene utilizzato direttamente per le simulazioni nel software commerciale agli elementi finiti ABAQUS, in cui il modello è denominato Concrete Damage Plasticity. Diversi parametri di modello vengono scelti per il calcestruzzo semplice e per il calcestruzzo fibrorinforzato al fine di evidenziare la principale differenza esistente nel loro comportamento post-snervamento o post-fessurazione. I casi di carico specifici esaminati nelle simulazioni includono le prove di trazione/compressione uniassiali, la prova di flessione su tre punti su una trave intagliata e un rivestimento di galleria sottoposto a pressioni del terreno in situ. I risultati numerici ottenuti vengono discussi e confrontati in termini di approcci costitutivi adottati e diversi materiali assunti.
A comparative study on approaches to numerical modelling of fiber-reinforced concrete
HUANG, WEI
2021/2022
Abstract
This thesis presents a numerical study of the behavior of fiber-reinforced concrete in comparison with plain concrete. The overall aim of the work is to evaluate the capabilities of different constitutive models and numerical methods for predicting structural responses, with a particular focus on fracture behavior. The approaches considered in this study include continuum-based finite element analysis using plasticity models and discrete-crack modeling using the cohesive zone concept in the framework of the combined finite-discrete element method. The literature survey that preceded the work helped recognize major differences in mechanical properties between plain concrete and fiber-reinforced concrete and, more importantly, identify some mainstream approaches to accounting for these differences as well as incorporating similarities in numerical simulations. Three widely used constitutive models for plain concrete are chosen to investigate their suitability for simulating fiber-reinforced concrete. The first one is the classical Drucker-Prager model, which is a standard elasto-plasticity model with relatively simple concepts and formulation. The second one is a plastic-damage model, which is formulated using both the theory of plasticity and the concept of fracture-energy-based damage in continuum damage mechanics. The third one is the so-called cohesive zone model, which assumes the initiation and progressive opening of a crack is governed by traction-separation relations and allows for the representation of discrete cracks. The numerical implementation and application of these constitutive models are the core parts of the work, for which the formulations and corresponding algorithms of them are studied in detail. The Drucker-Prager model and the cohesive crack model are implemented via a generic finite element coding system called Firedrake. The plastic-damage model, on the other hand, is directly used for simulations in the commercial finite element software ABAQUS, in which the model is named Concrete Damage Plasticity. Different model parameters are chosen for plain concrete and fiber-reinforced concrete in order to highlight the major difference existing in their post-yielding or post-cracking behavior. The specific loading cases examined in the simulations include the uniaxial tensile/compressive tests, the three-point bending test on a notched beam, and a tunnel lining subjected to in-situ earth pressures. The obtained numerical results are discussed and compared in terms of the constitutive approaches adopted as well as the different materials assumed.File | Dimensione | Formato | |
---|---|---|---|
Wei Huang - MSc Thesis.pdf
accessibile in internet per tutti
Dimensione
9.11 MB
Formato
Adobe PDF
|
9.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/196791