Plasma Electrolytic Oxidation (PEO) is a simple and cost-effective electrochemical technique for the surface modification of metals which recently gained great interest in the biomedical field for its ability to generate a bioactive porous oxide layer on widely used orthopedic metals, such as titanium and its alloys. One of the main benefits of this technique is the possibility of easily incorporating doping elements as metal cations (e.g., Ag, Cu and Zn), whose incorporation under anodic conditions is however passive, thus having a limited efficiency. In this work, commercially pure (c.p.) grade II titanium discs were treated in a borate-based electrolyte doped with copper and zinc. Their internalization during the PEO process was found to increase in alternate current (AC) conditions as compared to direct current (DC) conditions, showing a potential to promote dopants’ inclusion by enabling active transport of cations from the electrolyte to the plasma region at the metal surface. To assess the potential advantages of the AC PEO treatment regime over unipolar conditions, morphological assays and chemical-physical characterizations were performed. A slightly higher presence of copper and zinc inside the oxide was observed, while the coatings’ homogeneity was unaffected. The samples treated in optimized AC conditions also showed a higher cell viability – in terms of cells adhesion, proliferation and spreading – as well as pro-osteogenic properties. Furthermore, the effect of the cathodic phase was synergistic with the introduction of a chelating agent: the use of sodium EDTA showed a drastic influence on the quantity of dopants internalized in the oxide layer during AC PEO process. In this case, the greater ions’ embedding showed a significant effect on the coatings, by increasing the rutile phase presence and granting them strong antibacterial properties while retaining a good cell viability.
L’Ossidazione Elettrolitica al Plasma – in inglese Plasma Electrolytic Oxidation (PEO) – è una tecnica elettrochimica semplice ed economica per la modifica superficiale dei metalli, che recentemente ha riscosso grande interesse nel campo biomedico per la sua capacità di generare uno strato di ossido poroso e bioattivo su metalli ortopedici di largo utilizzo, come il titanio e le sue leghe. Uno dei principali vantaggi di questa tecnica è la possibilità di incorporare con relativa facilità nel coating elementi dopanti come alcuni cationi metallici (per es. Ag, Cu e Zn) ma questa incorporazione, se in condizioni anodiche, ha un’efficienza limitata essendo di origine passiva. Nel presente elaborato, campioni di titanio di grado II commercialmente puro (c.p.) sono stati trattati in un elettrolita a base di borato con aggiunta di rame e zinco. Numerose analisi morfologiche e caratterizzazioni chimico-fisiche sono state eseguite per valutare l’internalizzazione degli agenti dopanti nel coating in corrente alternata (Alternate Current AC) rispetto alla condizione di corrente continua (Direct Current DC) durante il processo PEO, nell’ottica di sfruttare un potenziale trasporto attivo di cationi dall’elettrolita alla regione del plasma che si trova sulla superficie metallica. È stata osservata un’internalizzazione leggermente superiore di rame e zinco all'interno dell'ossido in corrente alternata a parametri ottimizzati, mentre l'omogeneità dei rivestimenti è rimasta inalterata. I campioni trattati in condizioni AC hanno mostrato anche una maggiore vitalità cellulare – in termini di adesione e proliferazione – nonché proprietà pro-osteogeniche. Inoltre, l'effetto della fase catodica è stato sinergico con l'introduzione di un agente chelante (sodio EDTA). Quest’ultimo ha infatti portato ad un significativo aumento della quantità di dopanti internalizzati nello strato esterno di ossido durante il processo ottimizzato AC PEO. Infine, la maggiore incorporazione di ioni ha influito significativamente sulle proprietà dei rivestimenti, aumentando la presenza della fase cristallina di rutilo e conferendo al coating spiccate proprietà antibatteriche, mantenendo al contempo una buona vitalità cellulare.
Physical-chemical and biological properties of AC plasma electrolytic oxidation modified titanium for biomedical applications
Martinelli, Sara
2021/2022
Abstract
Plasma Electrolytic Oxidation (PEO) is a simple and cost-effective electrochemical technique for the surface modification of metals which recently gained great interest in the biomedical field for its ability to generate a bioactive porous oxide layer on widely used orthopedic metals, such as titanium and its alloys. One of the main benefits of this technique is the possibility of easily incorporating doping elements as metal cations (e.g., Ag, Cu and Zn), whose incorporation under anodic conditions is however passive, thus having a limited efficiency. In this work, commercially pure (c.p.) grade II titanium discs were treated in a borate-based electrolyte doped with copper and zinc. Their internalization during the PEO process was found to increase in alternate current (AC) conditions as compared to direct current (DC) conditions, showing a potential to promote dopants’ inclusion by enabling active transport of cations from the electrolyte to the plasma region at the metal surface. To assess the potential advantages of the AC PEO treatment regime over unipolar conditions, morphological assays and chemical-physical characterizations were performed. A slightly higher presence of copper and zinc inside the oxide was observed, while the coatings’ homogeneity was unaffected. The samples treated in optimized AC conditions also showed a higher cell viability – in terms of cells adhesion, proliferation and spreading – as well as pro-osteogenic properties. Furthermore, the effect of the cathodic phase was synergistic with the introduction of a chelating agent: the use of sodium EDTA showed a drastic influence on the quantity of dopants internalized in the oxide layer during AC PEO process. In this case, the greater ions’ embedding showed a significant effect on the coatings, by increasing the rutile phase presence and granting them strong antibacterial properties while retaining a good cell viability.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Martinelli_01.pdf
non accessibile
Descrizione: testo tesi
Dimensione
11.97 MB
Formato
Adobe PDF
|
11.97 MB | Adobe PDF | Visualizza/Apri |
2022_12_Martinelli_02.pdf
non accessibile
Descrizione: executive summary
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/196826