Ramjet and Scramjet engines are used in the context of supersonic and hypersonic propulsion as they are characterized by the absence of rotating parts and they don’t need to carry onboard the oxidizer; thus, at supersonic and hypersonic speeds their efficiency exceeds that of jet engines or rockets. In the present work the focus has been placed on the design and assessment of air intakes for high-speed propulsion systems. Starting from a classical, axisymmetric and fully enclosed Busemann intake, a methodology was introduced to design such intakes with freestream Mach number M_∞, exit Mach number M_exit and exit cross-sectional radius r as free design parameters. Moreover, proceeding with the insertion of further design variables, the possibility of leading-edge truncation was introduced in order to decrease the excessive length of a classical Busemann intake while keeping efficiency at an excellent level. Following the design of the intake, the performance parameters were analytically computed in order to assess and compare different designs and their related characteristics. Furthermore, considering an elliptical cross section comprised in an axisymmetric flow field, streamlines were traced to generate an inviscid three-dimensional geometry. Second, by means of a CFD software the Navier-Stokes equations for inviscid flow were solved to analyze and verify the accuracy of the design methodology. Then, by the resolution of the Navier-Stokes equations for viscous flow, the boundary layer displacement thickness along the intake’s surface was computed and a procedure to accurately apply the viscous correction was introduced. Furthermore, a 3D intake geometry was generated and investigated using a 3D viscous simulation. Finally, a procedure that consists of modifying a truncated intake in order to avoid its excessive performance degradation was proposed. The designed geometries and the procedures developed are in agreement with the expectations and match the numerical results with an excellent degree of precision.
I motori Ramjet e Scramjet sono utilizzati nell'ambito della propulsione supersonica e ipersonica in quanto sono caratterizzati dall'assenza di parti rotanti e non necessitano di portare a bordo l'ossidante; perciò, a velocità supersoniche e ipersoniche la loro efficienza supera quella dei motori a reazione o dei razzi. Nel presente lavoro l'attenzione è stata posta sulla progettazione e valutazione di prese d'aria per sistemi propulsivi ad elevata velocità. Partendo da un inlet di tipo Busemann classico ed assialsimmetrico, è stata introdotta una metodologia per progettare tali prese con i seguenti parametri di progetto liberi: numero di Mach del flusso entrante Mach M_∞, numero di Mach in uscita M_exit e raggio della sezione di uscita r come parametri di progetto liberi. Inoltre, procedendo con l'inserimento di ulteriori variabili di progetto, è stata introdotta la possibilità di troncamento del leading-edge in modo tale da diminuire l'eccessiva lunghezza di una classica presa Busemann mantenendo l'efficienza ad un ottimo livello. Successivamente alla progettazione dell’inlet sono stati calcolati analiticamente i parametri prestazionali al fine di valutare e confrontare i diversi progetti e le loro relative caratteristiche. Inoltre, considerando una sezione trasversale ellittica compresa all’interno di un campo di flusso assialsimmetrico, sono state tracciate linee di flusso per generare una geometria tridimensionale inviscida. In secondo luogo, per mezzo di un software CFD sono state risolte le equazioni di Navier-Stokes per il flusso inviscido per analizzare e verificare l'accuratezza della metodologia di progettazione presentata. Quindi, mediante la risoluzione delle equazioni di Navier-Stokes per il flusso viscoso, è stato calcolato lo spessore dello strato limite lungo la superficie della geometria ed è stata introdotta una procedura per applicare in maniera accurata la correzione viscosa. Inoltre, è stata generata una geometria tridimensionale ed è stata successivamente studiata per mezzo di una simulazione fluidodinamica 3D. Infine, è stata proposta una procedura che consiste nel modificare una presa troncata per evitare un eccessivo degrado prestazionale. Le geometrie progettate e le procedure sviluppate sono in accordo con le aspettative e corrispondono ai risultati numerici con un ottimo grado di precisione.
Multifidelity design and assessment of air intakes for high-speed propulsion systems
Tognelli, Alessandro
2021/2022
Abstract
Ramjet and Scramjet engines are used in the context of supersonic and hypersonic propulsion as they are characterized by the absence of rotating parts and they don’t need to carry onboard the oxidizer; thus, at supersonic and hypersonic speeds their efficiency exceeds that of jet engines or rockets. In the present work the focus has been placed on the design and assessment of air intakes for high-speed propulsion systems. Starting from a classical, axisymmetric and fully enclosed Busemann intake, a methodology was introduced to design such intakes with freestream Mach number M_∞, exit Mach number M_exit and exit cross-sectional radius r as free design parameters. Moreover, proceeding with the insertion of further design variables, the possibility of leading-edge truncation was introduced in order to decrease the excessive length of a classical Busemann intake while keeping efficiency at an excellent level. Following the design of the intake, the performance parameters were analytically computed in order to assess and compare different designs and their related characteristics. Furthermore, considering an elliptical cross section comprised in an axisymmetric flow field, streamlines were traced to generate an inviscid three-dimensional geometry. Second, by means of a CFD software the Navier-Stokes equations for inviscid flow were solved to analyze and verify the accuracy of the design methodology. Then, by the resolution of the Navier-Stokes equations for viscous flow, the boundary layer displacement thickness along the intake’s surface was computed and a procedure to accurately apply the viscous correction was introduced. Furthermore, a 3D intake geometry was generated and investigated using a 3D viscous simulation. Finally, a procedure that consists of modifying a truncated intake in order to avoid its excessive performance degradation was proposed. The designed geometries and the procedures developed are in agreement with the expectations and match the numerical results with an excellent degree of precision.File | Dimensione | Formato | |
---|---|---|---|
MSc_AERONAUTICAL_ENGINEERING_THESIS - TOGNELLI ALESSANDRO.pdf
Open Access dal 24/11/2023
Descrizione: Tesi di laurea magistrale in ingegneria aeronautica - Tognelli Alessandro
Dimensione
18.89 MB
Formato
Adobe PDF
|
18.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/196885