The behaviour of a spacecraft equipped with a large rotating payload is strongly af- fected by the loads at the rotor-bus interface arised from unavoidable inertial asymmetries present in the rotating part. The problems related to these asymmetries have been con- sidered during the development of recent space missions, notably the Copernicus Imaging Microwave Radiometry (CIMR) mission by ESA and the the Soil Moisture Active Pas- sive (SMAP) observatory mission by NASA. In particular, the effects associated with inertial unbalances potentially result in large internal forces and torques, thereby causing degradation of the system stability and performance and compromising the success of the mission. An Active Balancing System (ABS) composed by a set of movable masses and sensors measuring the the interface loads has been considered to overcome this problem in previous works. In particular, a decoupled control architecture has been developed, such that the spacecraft attitude is controlled by using classic control laws for attitude stabilization, whereas the positions of the masses is assigned by harmonic controller to balance the rotating device. Given this setting, in this thesis we focus on the scenarios in which some failures in the ABS occur. Specifically, we first address the case in which only a subset of the balancing masses is active, aiming to show what would happen in case of faulty actuators or for underactued designs of the ABS due to mass budget limitations. Then, a configuration with no ABS is studied to analyze if the spacecraft can be stabi- lized in case of complete failure of the balancing system. To this aim, a coordinate-free adaptive attitude controller is developed to achieve exact attitude stabilization, thereby compensating for the effects of the inertial asymmetries even in the absence of the ABS. Notably, the adaptive law makes use only of attitude and angular velocity measurements. In the final part of the thesis, we show how the adaptive law can be used to improve the spacecraft pointing peformance in case of underactuated ABS with respect to a non adaptive law and how it can be employed in case the measurement system of the ABS is faulty but the masses are still operative.
Il comportamento di un satellite dotato di un carico pagante rotante molto grande è fortemente influenzato dagli sforzi che possono generarsi all’interfaccia tra il rotore e la base, i quali derivano da inevitabili asimmetrie inerziali. È quindi necessario introdurre un meccanismo in grado di contrastare gli effetti di sbilanciamento, progettandolo nello specifico per la missione CIMR. In dettaglio, gli effetti associati agli sbilanciamenti in- erziali si traducono potenzialmente in forze e momenti interni elevati, provocando così il peggioramento della stabilità e delle prestazioni del sistema e compromettendo il successo della missione. Un sistema di bilanciamento attivo composto da un set di masse mobili può essere considerato come soluzione a questo problema. In particolare, è stata sviluppata un’architettura di controllo disaccoppiata, in modo tale che l’assetto del satellite possa essere controllato utilizzando leggi di controllo classiche, mentre le posizioni delle masse possono essere assegnate tramite un controllore armonico per condurre operazioni di bi- lanciamento. In questa tesi viene studiato un ABS dotato di sei masse, ma l’attenzione verrà posta sugli eventuali scenari in cui qualche guasto può presentarsi. In particolare, viene introdotta una configurazione sottoazionata, considerando quindi un guasto parziale del sistema di bilanciamento, con l’obiettivo di mostrare cosa accadrebbe nel caso in cui alcuni attuatori dovessero essere difettosi o non dovessero funzionassero normalmente; in- oltre è stata presentata una configurazione senza ABS per analizzare se la stabilizzazione del satellite può essere effettuata anche in caso di guasto completo del sistema di bilan- ciamento. In conclusione, viene sviluppato e testato un controllore adattivo per ottenere completa stabilizzazione d’assetto, provando così a compensare gli effetti delle asimmetrie inerziali anche in assenza dell’ABS. In particolare, la legge adattativa fa uso solo di misure di assetto e velocità angolare. Nella parte finale della tesi, viene mostrato come la legge adattativa può essere utilizzata per migliorare le prestazioni di puntamento del satellite in caso di ABS sottoazionato rispetto al caso di legge non adattativa e come può essere impiegata nel caso in cui il sistema di misura dell’ABS sia difettoso ma le masse sono ancora operative.
Adaptive attitude control for spacecraft with an unbalanced rotating device and a faulty balancing system
de SIMONE, NICOLA
2021/2022
Abstract
The behaviour of a spacecraft equipped with a large rotating payload is strongly af- fected by the loads at the rotor-bus interface arised from unavoidable inertial asymmetries present in the rotating part. The problems related to these asymmetries have been con- sidered during the development of recent space missions, notably the Copernicus Imaging Microwave Radiometry (CIMR) mission by ESA and the the Soil Moisture Active Pas- sive (SMAP) observatory mission by NASA. In particular, the effects associated with inertial unbalances potentially result in large internal forces and torques, thereby causing degradation of the system stability and performance and compromising the success of the mission. An Active Balancing System (ABS) composed by a set of movable masses and sensors measuring the the interface loads has been considered to overcome this problem in previous works. In particular, a decoupled control architecture has been developed, such that the spacecraft attitude is controlled by using classic control laws for attitude stabilization, whereas the positions of the masses is assigned by harmonic controller to balance the rotating device. Given this setting, in this thesis we focus on the scenarios in which some failures in the ABS occur. Specifically, we first address the case in which only a subset of the balancing masses is active, aiming to show what would happen in case of faulty actuators or for underactued designs of the ABS due to mass budget limitations. Then, a configuration with no ABS is studied to analyze if the spacecraft can be stabi- lized in case of complete failure of the balancing system. To this aim, a coordinate-free adaptive attitude controller is developed to achieve exact attitude stabilization, thereby compensating for the effects of the inertial asymmetries even in the absence of the ABS. Notably, the adaptive law makes use only of attitude and angular velocity measurements. In the final part of the thesis, we show how the adaptive law can be used to improve the spacecraft pointing peformance in case of underactuated ABS with respect to a non adaptive law and how it can be employed in case the measurement system of the ABS is faulty but the masses are still operative.File | Dimensione | Formato | |
---|---|---|---|
Thesis_925670.pdf
accessibile in internet per tutti
Descrizione: COMPLETE THESIS - NICOLA DE SIMONE - 925670
Dimensione
12.93 MB
Formato
Adobe PDF
|
12.93 MB | Adobe PDF | Visualizza/Apri |
ES__925670.pdf
accessibile in internet per tutti
Descrizione: COMPLETE EXECUTIVE SUMMARY - NICOLA DE SIMONE - 925670
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/196918