Recently a drive towards e-mobility has awakened the interest on the uptake of electric vehicles: in this thesis three main areas of concern have been deepened, i.e. the electric vehicle itself, the charging infrastructure and the integration between the vehicle and the grid, undertaking a literature review on state-of-the-art technologies, regulatory frameworks and future trends on these fields. This dissertation focused on the charging infrastructure, showcasing as the case study a DC microgrid for fast-charging applications, the eStation developed by Free2move eSolutions. To describe it effectively, the charging station has been studied as a whole, introducing DC microgrids as a breakthrough technology in the following years, and as complex merge of several subsystems, the interconnection of which brought to the surface the network’s hallmarks. This work focuses on the modelling of such a charging facility from the electrical and the energetic point of view, delving into topics that straddle the line between the two and that are crucial for the phases of the project, particularly from the planning to the execution. The electrical simulations investigated into the dimensioning phase of the eStation, concentrating on cables and fuses, and the steady-state, more thoroughly, and transient, preliminarily, analysis of different subsystems participation to a DC-side fault. A specific focus was dedicated to the direct connection of battery energy storage system (BESS) racks to the DC bus: this configuration was examined from the fault current contribution point of view, and this contribution turned out to be lower the more BESS racks are parallel-connected, feature that has been justified and widely discussed on simulated environments. The energy simulations relied upon the setup of a detailed model of the eStation developed through object-oriented programming: this model was then applied to a benchmarking process involving a Monte Carlo based sensitivity analysis over the increasing eStation utilization rate, and a deterministic energy management system (EMS) applied to an a posteriori comparison between an optimized and a heuristic eStation operation.
Recentemente una spinta verso la mobilità elettrica ha suscitato l’interesse nella diffusione dei veicoli elettrici: sono state approfondite tre aree di interesse principali, ovvero il veicolo elettrico, l’infrastruttura di ricarica e l’integrazione fra il veicolo e la rete elettrica, attraverso una revisione bibliografica su tecnologie all’avanguardia, quadri normativi e tendenze future in questi ambiti. Questa tesi si concentra sull’infrastruttura di ricarica, presentando come caso studio una microrete in DC per applicazioni di ricarica rapida, l’eStation sviluppata da Free2move eSolutions. Per descriverla efficacemente, la stazione di ricarica è stata studiata nel complesso, introducendo le microreti in DC come svolta tecnologica nei prossimi anni, e come una complessa unione di diversi sottosistemi, la cui interconnessione ha evidenziato i caratteri distintivi della microrete. Questo lavoro si focalizza sulla modellizzazione del sito di ricarica dal punto di vista elettrico ed energetico, approfondendo argomenti che coinvolgono entrambi questi ambiti e che sono fondamentali per le fasi di progettazione, dalla pianificazione all’esecuzione. Le simulazioni elettriche hanno indagato la fase di dimensionamento della eStation, concentrandosi su cavi e fusibili, e l’analisi, approfonditamente a regime e preliminarmente in transitorio, della partecipazione di vari sottosistemi a un guasto lato DC. Particolare attenzione è stata dedicata alla connessione diretta di un sistema di accumulo dell’energia a batteria al bus DC: questa configurazione è stata esaminata dal punto di vista del contributo al guasto, che è risultato tanto minore quante più batterie sono connesse in parallelo, caratteristica giustificata e discussa in ambienti simulati. Le simulazioni energetiche sono state basate sulla costruzione di un modello dettagliato della eStation sviluppato tramite programmazione per oggetti: questo modello è stato applicato a una valutazione comparata riguardante un’analisi di sensitività basata sul metodo Monte Carlo, variando il fattore di utilizzo della eStation, e un sistema di gestione dell’energia applicato a un confronto fra funzionamento ottimizzato ed euristico.
Electrical and energy modelling of a DC microgrid for fast-charging applications : the eStation case study
RAMASCHI, RICCARDO
2021/2022
Abstract
Recently a drive towards e-mobility has awakened the interest on the uptake of electric vehicles: in this thesis three main areas of concern have been deepened, i.e. the electric vehicle itself, the charging infrastructure and the integration between the vehicle and the grid, undertaking a literature review on state-of-the-art technologies, regulatory frameworks and future trends on these fields. This dissertation focused on the charging infrastructure, showcasing as the case study a DC microgrid for fast-charging applications, the eStation developed by Free2move eSolutions. To describe it effectively, the charging station has been studied as a whole, introducing DC microgrids as a breakthrough technology in the following years, and as complex merge of several subsystems, the interconnection of which brought to the surface the network’s hallmarks. This work focuses on the modelling of such a charging facility from the electrical and the energetic point of view, delving into topics that straddle the line between the two and that are crucial for the phases of the project, particularly from the planning to the execution. The electrical simulations investigated into the dimensioning phase of the eStation, concentrating on cables and fuses, and the steady-state, more thoroughly, and transient, preliminarily, analysis of different subsystems participation to a DC-side fault. A specific focus was dedicated to the direct connection of battery energy storage system (BESS) racks to the DC bus: this configuration was examined from the fault current contribution point of view, and this contribution turned out to be lower the more BESS racks are parallel-connected, feature that has been justified and widely discussed on simulated environments. The energy simulations relied upon the setup of a detailed model of the eStation developed through object-oriented programming: this model was then applied to a benchmarking process involving a Monte Carlo based sensitivity analysis over the increasing eStation utilization rate, and a deterministic energy management system (EMS) applied to an a posteriori comparison between an optimized and a heuristic eStation operation.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Ramaschi.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
11.27 MB
Formato
Adobe PDF
|
11.27 MB | Adobe PDF | Visualizza/Apri |
2022_12_Ramaschi_Executive.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/197276