The growing interest in clean energy generation methods lead to great innovations in storage systems. About 90% of worldwide energy storage takes place in the form of hydraulic pumping: the water processed by the turbine is subsequently pumped to the upper tank in order to guarantee a constant reserve which allows to face droughts, peaks of demand, stability requests from the grid, or black start capability. This conversion method is characterized by an average efficiency of 80% and requires the implementation of two basins placed on two different levels connected by one or more pipelines, leading to a very high footprint and costs, the largest among the storage facilities. Fessenden in 1910 was the first one to theorize the construction of UPSP (Underground Pumped Storage Plants) with the hypothesis of using a superficial reservoir as an upper basin and an underground one as a lower basin, exploiting tunnels and passages of abandoned mines to minimize excavation costs: in this way the footprint of the plant is considerably reduced, but other complications occur. Since the walls of the tunnels are made of rock, it becomes essential to know the hydrodynamic phenomena linked to the processes of filling and emptying of the tunnels, because they have direct effects on erosion, on the operating principle of the turbomachinery, on the variation of pressure inside the channels and on the stability of the system. Since UPSPs have not been realized yet in real applications, the study of these phenomena takes place on scale models in laboratory. In this thesis the study of the filling and emptying processes inside a single channel, and the consequent analysis of the damping time necessary for the subsequent wave to stabilize will be proposed. On the basis of the results obtained, it would be possible to use this work as a basis to implement appropriate scaling methods and simulate the operation of real plants and verify their technical feasibility.
Il crescente interesse per i metodi di generazione di energia pulita è andato di pari passo con l’avanzamento sugli studi dei sistemi di stoccaggio. Circa il 90% dello stoccaggio dell’energia a livello mondiale avviene sottoforma di impianti di pompaggio idraulici: l’acqua processata dalla turbina viene successivamente pompata verso il serbatoio superiore in modo da garantire una riserva dalla quale attingere anche nei momenti di siccità, di picchi della domanda, richieste dalla rete elettrica o come capacità di black start. Questo metodo di conversione ha delle efficienze intorno all’80%, e necessita l’utilizzo di due bacini posti su due livelli differenti collegati da una o più condotte, portando ad una superficie di impronta molto grande, la maggiore tra gli impianti di stoccaggio. Fessenden nel 1910 fu il primo a teorizzare la realizzazione di impianti UPSP (Underground Pumped Storage Plants) con l’ipotesi di utilizzare un serbatoio superficiale come bacino superiore ed uno sotterraneo come bacino inferiore, sfruttando gallerie e cunicoli di miniere abbandonate per minimizzare i costi di scavo: in questo modo la superficie di impronta si riduce notevolmente, ma subentrano altre complicazioni. Poiché le pareti delle gallerie sono di roccia diventa essenziale conoscere i fenomeni idrodinamici legati al processo di riempimento e svuotamento delle stesse, perché questi hanno degli effetti diretti sull’erosione, sul principio di funzionamento delle turbomacchine, sulla variazione di pressione interna alle gallerie, sulla stabilità del sistema. Poiché gli UPSP non sono ancora stati realizzati nella pratica, lo studio di questi fenomeni avviene su modelli in scala in laboratorio. In questa tesi verrà proposto lo studio dei processi di riempimento e svuotamento del canale, e la conseguente analisi del tempo di smorzamento necessario affinché l’onda che si propaga nel canale si stabilizzi una volta cessata la causa che l’ha generata. Sulla base dei risultati ottenuti sarebbe possibile sfruttare questa tesi per implementare degli opportuni metodi di conversione in scala con il fine di simulare l’operatività di impianti reali e verificarne la fattibilità tecnica.
Damping time, filling and emptying processes inside a UPSP's channel
Monticavalli, Nicholas
2021/2022
Abstract
The growing interest in clean energy generation methods lead to great innovations in storage systems. About 90% of worldwide energy storage takes place in the form of hydraulic pumping: the water processed by the turbine is subsequently pumped to the upper tank in order to guarantee a constant reserve which allows to face droughts, peaks of demand, stability requests from the grid, or black start capability. This conversion method is characterized by an average efficiency of 80% and requires the implementation of two basins placed on two different levels connected by one or more pipelines, leading to a very high footprint and costs, the largest among the storage facilities. Fessenden in 1910 was the first one to theorize the construction of UPSP (Underground Pumped Storage Plants) with the hypothesis of using a superficial reservoir as an upper basin and an underground one as a lower basin, exploiting tunnels and passages of abandoned mines to minimize excavation costs: in this way the footprint of the plant is considerably reduced, but other complications occur. Since the walls of the tunnels are made of rock, it becomes essential to know the hydrodynamic phenomena linked to the processes of filling and emptying of the tunnels, because they have direct effects on erosion, on the operating principle of the turbomachinery, on the variation of pressure inside the channels and on the stability of the system. Since UPSPs have not been realized yet in real applications, the study of these phenomena takes place on scale models in laboratory. In this thesis the study of the filling and emptying processes inside a single channel, and the consequent analysis of the damping time necessary for the subsequent wave to stabilize will be proposed. On the basis of the results obtained, it would be possible to use this work as a basis to implement appropriate scaling methods and simulate the operation of real plants and verify their technical feasibility.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Monticavalli.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
5.08 MB
Formato
Adobe PDF
|
5.08 MB | Adobe PDF | Visualizza/Apri |
Executive summary 2022_12_Monticavalli.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/197426