In Italy the lack of maintenance of the water network caused in 2020 the dispersion of 0.9 billion cubic meters of water along the entire national pipeline system. Often, the high initial investment for the construction of these infrastructures is not accompanied by investments linked to monitoring that would ensure their proper functioning; however, pipeline monitoring is crucial as it would prevent potential damage, reduce economic losses, and plan maintenance activities over time. This thesis focuses on the monitoring of pipelines that carry water and, in particular, aims to verify whether the optical fiber, used as temperature and strain distributed sensor by means of Brillouin technology, is suitable for monitoring water losses along the pipes. The state of the art of the use of this technology for Pipeline Health Monitoring (PHM) and its use for leak detection is presented. The experimental activity carried out on High-Density Polyethylene (HDPE) pipes, made it possible to carry out a first proof of concept, based on the winding of a standard optical fiber cable for telecommunications around a small system of HDPE pipes. The first results obtained, compared with the theoretical modeling, validated the effectiveness of the solution, and therefore pave the way for further investigations towards industrial prototyping and application on field. Further developments in this area could lead, in the future, to the production of "natively intelligent" ducts, in which the optical fiber is extruded directly onto the tubes already in the production phase. The installation of the same would allow the identification of a leak remotely and in real-time, thus reducing the waste of water resources and considerably improving the management and maintenance operations of the same, especially when located in logistically complex environments.
La mancata manutenzione della rete idrica, connessa ad endemiche difficoltà gestionali, ha causato solo nel 2020 la dispersione di 0.9 miliardi di metri cubi di acqua lungo l’intero sistema nazionale di tubazioni. In diversi casi l'elevato investimento iniziale per la realizzazione di queste infrastrutture non è accompagnato da investimenti legati al monitoraggio che permetterebbero di garantirne il corretto funzionamento; tuttavia, il monitoraggio delle condotte è fondamentale poiché permetterebbe di prevenire potenziali danni, ridurre le perdite economiche e pianificare nel tempo le attività di manutenzione. Questo elaborato si concentra sul monitoraggio di condotte che trasportano acqua e, in particolare, si pone l’obiettivo di verificare se la fibra ottica, utilizzata come sensore distribuito di temperatura e deformazione attraverso l’interrogazione con tecnologia Brillouin, sia adatta al monitoraggio dello stato di salute della condotta misurando le pressioni agenti internamente. Viene presentato lo stato dell'arte dell’utilizzo di questa tecnologia nel campo del Pipeline Health Monitoring (PHM) e il suo utilizzo per la rilevazione delle perdite. L’attività sperimentale, condotta su tubi in High-Density Polyethylene (HDPE), ha permesso di effettuare un primo proof of concept, basato sull’avvolgimento di un cavo in fibra ottica standard per telecomunicazioni attorno a un piccolo impianto di tubi HDPE. I primi risultati ottenuti, confrontati con la modellazione teorica, hanno validato l’efficacia della soluzione e aprono quindi la strada a ulteriori indagini verso una prototipizzazione a livello industriale e un’applicazione sul campo. Ulteriori sviluppi in questo ambito potrebbero portare, in futuro, alla produzione di condotte “nativamente intelligenti”, in cui la fibra ottica viene estrusa direttamente sui tubi già in fase di produzione. L’installazione delle stesse permetterebbe l’individuazione da remoto e in tempo reale di una perdita, riducendo così lo spreco della risorsa idrica e migliorando notevolmente le operazioni di gestione e manutenzione delle stesse soprattutto quando collocate in ambienti logisticamente complessi.
Monitoraggio di condotte attraverso sensori distribuiti in fibra ottica: considerazioni teoriche e indagini sperimentali
LONGONI, MARINA
2021/2022
Abstract
In Italy the lack of maintenance of the water network caused in 2020 the dispersion of 0.9 billion cubic meters of water along the entire national pipeline system. Often, the high initial investment for the construction of these infrastructures is not accompanied by investments linked to monitoring that would ensure their proper functioning; however, pipeline monitoring is crucial as it would prevent potential damage, reduce economic losses, and plan maintenance activities over time. This thesis focuses on the monitoring of pipelines that carry water and, in particular, aims to verify whether the optical fiber, used as temperature and strain distributed sensor by means of Brillouin technology, is suitable for monitoring water losses along the pipes. The state of the art of the use of this technology for Pipeline Health Monitoring (PHM) and its use for leak detection is presented. The experimental activity carried out on High-Density Polyethylene (HDPE) pipes, made it possible to carry out a first proof of concept, based on the winding of a standard optical fiber cable for telecommunications around a small system of HDPE pipes. The first results obtained, compared with the theoretical modeling, validated the effectiveness of the solution, and therefore pave the way for further investigations towards industrial prototyping and application on field. Further developments in this area could lead, in the future, to the production of "natively intelligent" ducts, in which the optical fiber is extruded directly onto the tubes already in the production phase. The installation of the same would allow the identification of a leak remotely and in real-time, thus reducing the waste of water resources and considerably improving the management and maintenance operations of the same, especially when located in logistically complex environments.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Longoni.pdf
accessibile in internet per tutti
Dimensione
4.5 MB
Formato
Adobe PDF
|
4.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/198039