In the last fifteen years, the growing environmental concerns have lead the aviation industry to adopt lean burning combustors for gas turbine engines. These combustors permit to obtain higher combustion efficiency, which leads to a reduction of both pollutant emission and fuel consumption. Despite this advantage, lean-burn combustors require highly swirling flow to achieve an uniform air-fuel mixture and a complete combustion. This swirled flow, combined with the temperature non-uniformity created by the fuel injectors, travel towards the turbine affecting its performance and the overall engine e ciency. Researchers have started to investigate these effects in the last years by trying to simulate the conditions created by the combustor. In the LFM, a combustor simulator, called EWG, has been built specifically to create combined temperature and velocity instationarities. One main characteristic of the flow released by the combustor is the high level of turbulence, which has been recreated through the combustor simulator and analyzed with a Hot wire anemometer. Different working conditions of the EWG have been analyzed with the aim to understand how the injection of an entropy wave affects the swirling flow formation and evolution and the respective level of turbulence. In particular, the difference in vortex and turbulence intensity have been compared for four different cases: EWG off Continuous Hot-streak, EWG on 10 Hz EWG on 110 Hz The conditions have been selected to analyze the effects of the entropy wave and to determine whether the injection frequency plays a relevant role in this phenomenon.
Negli ultimi anni, a seguito della crescente attenzione globale verso l'ambiente, le aziende del settore aeronautico hanno adottato dei nuovi tipi di combustori per le turbine a gas. Questi combustori bruciano il carburante utilizzando una miscela magra, ottenendo una elevata efficienza di combustione che consente la riduzione dei consumi di carburante e delle emissioni di inquinanti. Nonostante questi vantaggi, i combustori a miscela magra richiedono flussi molto vorticosi per ottenere una miscela uniforme di aria e combustibile ed raggiungere quindi una combustione completa. Questo flusso vorticoso, in combinazione con le non uniformità di temperatura create dagli iniettori di combustibile, fluisce verso la turbina modificandone il funzionamento e il relativo rendimento. Negli ultimi anni, i ricercatori hanno iniziato a studiare gli effetti sulle turbine cercando di ricreare le condizioni a valle del combustore. Nel laboratorio LFM del politecnico di Milano un simulatore del combustore è stato appositamente costruito per ricreare condizioni non stazionarie di temperature e di velocità. Un'importante caratteristica del flusso prodotto da questi combustori è l'elevato livello di turbolenza, che è stato misurato in questa tesi tramite un anemometro a filo caldo. Il simulatore è stato fatto funzionare in diverse condizioni, analizzando come l'iniezione di onde d'entropia influenza la formazione del vortice e l'evoluzione dei rispettivi livelli di turbolenza. In particolare, la differenza di intensità di turbolenza e la vorticità sono state confrontate in quattro casi differenti: EWG off Hot-streak continuo EWG on 10 Hz EWG on 110 Hz che sono stati scelti sia per analizzare gli effetti dell'introduzione delle onde d'entropia, sia per determinare il ruolo della frequenza di iniezione in questo fenomeno.
Study of the turbulent flow downstream of a gas turbine combustor simulator
Motta, Luca
2021/2022
Abstract
In the last fifteen years, the growing environmental concerns have lead the aviation industry to adopt lean burning combustors for gas turbine engines. These combustors permit to obtain higher combustion efficiency, which leads to a reduction of both pollutant emission and fuel consumption. Despite this advantage, lean-burn combustors require highly swirling flow to achieve an uniform air-fuel mixture and a complete combustion. This swirled flow, combined with the temperature non-uniformity created by the fuel injectors, travel towards the turbine affecting its performance and the overall engine e ciency. Researchers have started to investigate these effects in the last years by trying to simulate the conditions created by the combustor. In the LFM, a combustor simulator, called EWG, has been built specifically to create combined temperature and velocity instationarities. One main characteristic of the flow released by the combustor is the high level of turbulence, which has been recreated through the combustor simulator and analyzed with a Hot wire anemometer. Different working conditions of the EWG have been analyzed with the aim to understand how the injection of an entropy wave affects the swirling flow formation and evolution and the respective level of turbulence. In particular, the difference in vortex and turbulence intensity have been compared for four different cases: EWG off Continuous Hot-streak, EWG on 10 Hz EWG on 110 Hz The conditions have been selected to analyze the effects of the entropy wave and to determine whether the injection frequency plays a relevant role in this phenomenon.File | Dimensione | Formato | |
---|---|---|---|
Study of the turbulent flow downstream of a gas turbine combustor simulator.pdf
accessibile in internet per tutti
Dimensione
10.46 MB
Formato
Adobe PDF
|
10.46 MB | Adobe PDF | Visualizza/Apri |
Extended abstract_Study of the turbulent flow downstream of a gas turbine combustor simulator.pdf
accessibile in internet per tutti
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/198332