A new research field of metallurgy is based on the development of new alloys that contain more principal elements. These alloys are called high entropy alloys. In order to obtain new alloys with high mechanical and functional properties, it is necessary to explore an extremely large number of combinations of elements. It is therefore necessary to have guidelines for designing new alloys. Several research groups have proposed predictive models based on thermodynamic and Hume-Rothery parameters regarding the stability of phases. These criteria, however, have been shown to lead to erroneous predictions. The first part of this thesis is focused on an extensive bibliographic research. This research was performed to collect the physical, thermodynamic and mechanical data of the high entropy refractory alloys developed up to now. This database was used to verify the validity of the main models proposed to identify the stability field of the solid solution. Furthermore, with this work, new guidelines, based on Hume-Rothery and thermodynamic parameters, have been proposed to make predictions about the stability of the solid solution and of intermetallic phases. The second part of this work is related to the design of new high-entropy refractory alloys that have low density and with potentially high mechanical properties, both at room temperature and at high temperatures. The design of these alloys is based on literature results and the proposed predictive model. Ten alloys were produced by vacuum arc remelting. In particular, they belong to the system AlMoNbTiVZr. Finally, the microstructural and crystallographic characteristics of these alloys were studied by optical and scanning electron microscopy and X-ray diffraction in as-cast condition and after annealing thermal treatments.
Un nuovo campo di ricerca della metallurgia si basa sullo sviluppo di nuove leghe che contengono più elementi principali. Queste leghe prendono il nome di leghe ad alta entropia. Al fine di ottenere nuove leghe con elevate proprietà meccaniche e funzionali, è necessario esplorare un numero di combinazioni di elementi estremamente vasto. Si rende quindi necessario avere delle linee guida per progettare nuove leghe. Diversi gruppi di ricerca hanno proposto dei modelli predittivi basati su parametri termodinamici e di Hume-Rothery per quanto riguarda le fasi presenti. Questi criteri, tuttavia, si è rivelato possano portare a previsioni errate. La prima parte di questa tesi è incentrata su un'approfondita ricerca bibliografica. Questa ricerca è stata eseguita per raccogliere le proprietà fisiche, termodinamiche e meccaniche delle leghe refrattarie ad alta entropia sviluppate fino ad ora. Questo database è stato utilizzato per verificare la validità dei principali modelli proposti per individuare il campo di stabilità della soluzione solida. Inoltre, con questo lavoro, sono state proposte nuove linee guida, basate su parametri di Hume-Rothery e termodinamici, per fare previsioni circa la stabilità della soluzione solida e di fasi intermetalliche. La seconda parte di questo lavoro è relativa alla progettazione di nuove leghe refrattarie ad alta entropia che siano leggere e con potenziali elevate proprietà meccaniche, sia a temperatura ambiente che ad alta temperatura. Il design di queste leghe si basa sulla ricerca bibliografica e sul modello predittivo proposto. Dieci leghe sono state prodotte mediante fusione ad arco. In particolare, appartengono al sistema AlMoNbTiVZr. Infine, le caratteristiche microstrutturali e cristallografiche di queste leghe sono state studiate mediante microscopia ottica e a scansione elettronica e diffrattometria a raggi X in condizioni as-cast e dopo trattamento termico di omogeneizzazione.
Design, casting and characterization of lightweight refractory HEAs based on AlMoNbTiVZr system
MOTTA, CRISTINA
2021/2022
Abstract
A new research field of metallurgy is based on the development of new alloys that contain more principal elements. These alloys are called high entropy alloys. In order to obtain new alloys with high mechanical and functional properties, it is necessary to explore an extremely large number of combinations of elements. It is therefore necessary to have guidelines for designing new alloys. Several research groups have proposed predictive models based on thermodynamic and Hume-Rothery parameters regarding the stability of phases. These criteria, however, have been shown to lead to erroneous predictions. The first part of this thesis is focused on an extensive bibliographic research. This research was performed to collect the physical, thermodynamic and mechanical data of the high entropy refractory alloys developed up to now. This database was used to verify the validity of the main models proposed to identify the stability field of the solid solution. Furthermore, with this work, new guidelines, based on Hume-Rothery and thermodynamic parameters, have been proposed to make predictions about the stability of the solid solution and of intermetallic phases. The second part of this work is related to the design of new high-entropy refractory alloys that have low density and with potentially high mechanical properties, both at room temperature and at high temperatures. The design of these alloys is based on literature results and the proposed predictive model. Ten alloys were produced by vacuum arc remelting. In particular, they belong to the system AlMoNbTiVZr. Finally, the microstructural and crystallographic characteristics of these alloys were studied by optical and scanning electron microscopy and X-ray diffraction in as-cast condition and after annealing thermal treatments.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Motta_01.pdf
non accessibile
Descrizione: Master thesis
Dimensione
6.07 MB
Formato
Adobe PDF
|
6.07 MB | Adobe PDF | Visualizza/Apri |
2022_12_Motta_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/198534