Gears play an important role in all the applications in which, on the one hand, it is necessary to transmit power and, on the other hand, it has to be accomplished with high efficiency and high power/torque density. The continuos evolution in the power-transmission field has always been supported by geared transmissions that have been adapted to new demands. Nowadays, among other requirements, this field calls for an increase in the power/torque density of gearboxes. Focusing only on the gear part of geared transmissions, this requirement can be achieved in different ways: adopting a more performant gear (i.e. better materials, better treatment and better surfaces), optimizing the flanks profile (and in some cases moving away from the classical involute profile) or reducing the safety margins (presuming a deep understanding and a proper knowledge of how to manage the increased damages progressions). The aforementioned strategies cannot be implemented indiscriminately. In fact, they must be supported by accurate studies. The selection of more performant materials and treatments demands gear characterization tests in order to obtain accurate gear strength numbers, as well as to move away from the -correct- conservative nature of the standards. How should these tests be carried out? How can the experimental evidence be interpreted without losing information? Distancing from the involute profile means renouncing all of the advantages that this profile provides. How does the new profile operate? What are the advantages and disadvantages of it? Is it feasible to perform quick survey with analytical methods? Reducing the safety factor implies a higher risk of failure. How should this additional risk be managed? How could a critical failure be prevented? Here, the idea behind structural health monitoring plays an important role. In light of this, this thesis attempts to offer a partial response to the aforementioned issues by presenting five different works. The first three works concern the interpretation and elaboration of pulsator test results (i.e. from gear experimental characterizations in respect to the toot fatigue fracture phenomena). Then, a second study appears regarding a non-conventional geared profile, defined with the aim of reducing the contact pressure within rack and pinion systems used in off-shore applications. Lastly, it is possible to find an article describing the integration of electronics components within the gear body for gear structural health monitoring purposes.
Gli ingranaggi svolgono un ruolo essenziale in tutte quelle applicazioni in cui, da un lato, è necessario trasmettere potenza meccanica e, dall’altro, ciò deve essere effettuato efficientemente e con un’elevata densità di potenza. La continua evoluzione nel campo della trasmissione di potenza è sempre stata supportata da trasmissioni ad ingranaggi via via adeguate alle nuove domande. Ad oggi, insieme al raggiungimento di altri requisiti, tale settore pone la richiesta per un aumento della densità di potenza/coppia delle trasmissioni ad ingranaggi. Focalizzandosi solo sulla parte ingranaggi di tali trasmissioni, questo requisito può essere raggiunto in modi differenti: adottando delle ruote dentate più performanti (ovvero migliori materiali, migliori trattamenti e migliori superfici), ottimizzando il profilo dei fianchi dei denti (ed in alcuni casi allottandosi dal classico profilo ad evolvente) o riducendo i margini di sicurezza (presumendo una maggiore comprensione e conoscenza di come gestire un più severo accumulo del danneggiamento). Tutte queste strategie non possono essere adottate in maniera indiscriminata ma devono essere supportate da studi accurati. La scelta di materiali e trattamenti più performanti richiede prove di caratterizzazione su ingranaggi al fine di ottenere valori resistenziali accurati, così come allontanarsi dalla -corretta- natura conservativa degli standard. Come effettuare tali test? Come interpretare tali test senza perdere informazioni? Allontanarsi dal profilo ad evolvente implica rinunciare tutti i vantaggi forniti da tale profilo. Come si comporta il nuovo profilo? Quali sono i suoi vantaggi e i suoi svantaggi? È possibile effettuare studi sfruttando metodi analitici? Ridurre i fattori di sicurezza implica una maggiore probabilità di cedimento? Come gestire tale aumento? Come prevenire l’occorrenza di un cedimento critico? In questo caso, l’idea dietro il monitoraggio strutturale ha un ruolo fondamentale. Alla luce di tutto ciò, questa tesi cerca di fornire una risposta parziale presentando cinque diversi lavori. I primi tre riguardano l’interpretazione e l’elaborazione dei risultati delle prove a pulsatore, ovvero prove per investigare la resistenza di ingranaggi in rispetto al fenomeno della fatica flessionale piede dente. Successivamente, viene discusso uno studio inerente un profilo dentato non convenzionale, sviluppato al fine di ridurre la pressione di contatto in sistemi pignone cremagliera per applicazioni off-shore. Ultimo, viene presentato un caso di studio inerente l’integrazione all’interno di un corpo ruota di sensoristica per il monitoraggio strutturale dell’ingranaggio stesso.
ADVANCES IN GEAR DESIGN AND TESTING
Bonaiti, Luca
2022/2023
Abstract
Gears play an important role in all the applications in which, on the one hand, it is necessary to transmit power and, on the other hand, it has to be accomplished with high efficiency and high power/torque density. The continuos evolution in the power-transmission field has always been supported by geared transmissions that have been adapted to new demands. Nowadays, among other requirements, this field calls for an increase in the power/torque density of gearboxes. Focusing only on the gear part of geared transmissions, this requirement can be achieved in different ways: adopting a more performant gear (i.e. better materials, better treatment and better surfaces), optimizing the flanks profile (and in some cases moving away from the classical involute profile) or reducing the safety margins (presuming a deep understanding and a proper knowledge of how to manage the increased damages progressions). The aforementioned strategies cannot be implemented indiscriminately. In fact, they must be supported by accurate studies. The selection of more performant materials and treatments demands gear characterization tests in order to obtain accurate gear strength numbers, as well as to move away from the -correct- conservative nature of the standards. How should these tests be carried out? How can the experimental evidence be interpreted without losing information? Distancing from the involute profile means renouncing all of the advantages that this profile provides. How does the new profile operate? What are the advantages and disadvantages of it? Is it feasible to perform quick survey with analytical methods? Reducing the safety factor implies a higher risk of failure. How should this additional risk be managed? How could a critical failure be prevented? Here, the idea behind structural health monitoring plays an important role. In light of this, this thesis attempts to offer a partial response to the aforementioned issues by presenting five different works. The first three works concern the interpretation and elaboration of pulsator test results (i.e. from gear experimental characterizations in respect to the toot fatigue fracture phenomena). Then, a second study appears regarding a non-conventional geared profile, defined with the aim of reducing the contact pressure within rack and pinion systems used in off-shore applications. Lastly, it is possible to find an article describing the integration of electronics components within the gear body for gear structural health monitoring purposes.File | Dimensione | Formato | |
---|---|---|---|
thesis_UpLoad@20230413.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
33.81 MB
Formato
Adobe PDF
|
33.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/198572