The use of Fiber-Reinforced Polymer (GFRP) in structural applications has been increasing over the past few decades, especially thanks to its non-corrosive nature given it higher durability compared with steel-reinforced components. The research results related to the physical and mechanical properties of GFRP bars allows study the performance of this material in structural elements and set differences in their response between concrete members reinforced with GFRP and steel. There is a lack of studies related to using GFRP bars with thermoplastic polymers as resin. This thesis evaluates the difference in the flexural and shear response between concrete beams using longitudinal and transversal reinforcement made of steel, GFRP with thermoplastic-resin, and thermoset-resin bars. Four concrete beams with dimensions of 3000 x 300 x 250 mm were constructed and tested in a four-point loading test setup. Each beam has the same stirrups spacing, bar spacing, flexural and shear reinforcement ratio. Two of the four beams were reinforced with thermoplastic bars with the difference that one used straight rebars as longitudinal reinforcement, while the other used bent rebars on the sides. The results show that the beams reinforced with GFRP had a lower peak load and developed shear failure in contrast with the beam reinforced with steel that shows a flexural failure and obtained the highest load among the four tests, this behavior is related to the stiffness of each beam that is directly related with the reinforcement material. Additionally, different equations and approaches to predict the deflection, shear resistance, and nominal bending moment were evaluated and discussed, these equations were proposed by guidelines, codes, and studies currently available in the literature, these results were compared with the experimental data, to evaluate the level of accuracy of the equations.
L'uso del polimero rinforzato con fibre (GFRP) nelle applicazioni strutturali è aumentato negli ultimi decenni, soprattutto grazie alla sua natura non corrosiva data la sua maggiore durata rispetto ai componenti rinforzati in acciaio. I risultati della ricerca relativa alle proprietà fisiche e meccaniche delle barre in vetroresina consentono di studiare le prestazioni di questo materiale negli elementi strutturali e impostare le differenze nella loro risposta tra elementi in calcestruzzo rinforzati con vetroresina e acciaio. Mancano studi relativi all'uso di barre GFRP che hanno polimeri termoplastici come resina. Questa tesi valuta la differenza nella risposta a flessione e taglio tra travi in calcestruzzo utilizzando armature longitudinali e trasversali in acciaio, vetroresina con barre in resina termoplastica e in resina termoindurente. Quattro travi in calcestruzzo con dimensioni di 3000 x 300 x 250 mm sono state costruite e testate in una configurazione di prova di carico a quattro punti. Ogni trave ha la stessa interasse staffe, interasse barre, rapporto di armatura a flessione e taglio. Due delle quattro travi sono state armate con barre termoplastiche con la differenza che una utilizzava barre diritte come armatura longitudinale, mentre l'altra utilizzava barre curve sui lati. I risultati mostrano che le travi rinforzate con GFRP avevano un carico di picco inferiore e sviluppavano una rottura a taglio in contrasto con la trave armata con acciaio che mostrava una rottura per flessione e otteneva il carico più alto tra le quattro prove, questo comportamento è correlato alla rigidezza di ciascuna trave che è direttamente correlata con il materiale di rinforzo. Inoltre sono state valutate e discusse diverse equazioni e approcci per prevedere la deflessione, la resistenza al taglio e il momento flettente nominale, queste equazioni sono state proposte da linee guida, codici e studi attualmente disponibili in letteratura, questi risultati sono stati confrontati con i dati sperimentali, per valutare il livello di accuratezza delle equazioni.
Shear and flexural behavior of beams reinforced with thermoplastic and thermoset resin GFRP rebars
ROSAS SEGURA, JORGE ALEXANDER
2021/2022
Abstract
The use of Fiber-Reinforced Polymer (GFRP) in structural applications has been increasing over the past few decades, especially thanks to its non-corrosive nature given it higher durability compared with steel-reinforced components. The research results related to the physical and mechanical properties of GFRP bars allows study the performance of this material in structural elements and set differences in their response between concrete members reinforced with GFRP and steel. There is a lack of studies related to using GFRP bars with thermoplastic polymers as resin. This thesis evaluates the difference in the flexural and shear response between concrete beams using longitudinal and transversal reinforcement made of steel, GFRP with thermoplastic-resin, and thermoset-resin bars. Four concrete beams with dimensions of 3000 x 300 x 250 mm were constructed and tested in a four-point loading test setup. Each beam has the same stirrups spacing, bar spacing, flexural and shear reinforcement ratio. Two of the four beams were reinforced with thermoplastic bars with the difference that one used straight rebars as longitudinal reinforcement, while the other used bent rebars on the sides. The results show that the beams reinforced with GFRP had a lower peak load and developed shear failure in contrast with the beam reinforced with steel that shows a flexural failure and obtained the highest load among the four tests, this behavior is related to the stiffness of each beam that is directly related with the reinforcement material. Additionally, different equations and approaches to predict the deflection, shear resistance, and nominal bending moment were evaluated and discussed, these equations were proposed by guidelines, codes, and studies currently available in the literature, these results were compared with the experimental data, to evaluate the level of accuracy of the equations.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Jorge_Rosas_Final.pdf
non accessibile
Descrizione: Final version
Dimensione
9.26 MB
Formato
Adobe PDF
|
9.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/198813