Despite considerable advances in microsurgical techniques over the past decades, bone tissue remain a challenging arena to obtain a satisfying functional and structural repair after damage. Indeed, while bone tissue display inherent regrowth and self-restoration features to some extent, the capacity of the injured bones to restore load-bearing function is often insufficient, resulting in fracture nonunion. So far, critically sized bone lesions can be cured through Ilizarov osteodistraction. Over the years, many studies have been performed to find a way of actively healing bone lesions, and to date, the gold standard is the autograft, i.e. the self-transplantation of bone tissue from another area of the patient’s body; unfortunately, this technique is not optimal for large bone lesions as it strongly compromises the donor site. Scaffolds combined with mesenchymal stromal cells (MSCs) appear as very promising candidates to overcome the present limitations; in this thesis, we exploit silk fibroin for its unique mechanical properties, controllable biodegradation rate and high biocompatibility to realize novel bone constructs with increased efficacy, seeded with MSCs and grown in bioreactors with two different culture media: FBS and hPL. After three weeks of dynamic culture, the resulting constructs (scaffold + cells) are used for post-culture experiments (including ALP assay, calcium assay, DNA assay and immunohistomicroscopy) or for synchrotron investigation. At the synchrotron, the constructs are tested in order to obtain high-resolution images, allowing for the first time to perform image-guided failure assessment of bone constructs and to obtain a 3D reconstruction of the newformed bone. Thanks to the unprecedent resolution offered by the synchrotron, we deepen the study of scaffold-cell interaction and the possible differences due to the use of different culture medium, in order to demonstrate whether a particular scaffold geometry and arrangement affects or not the differentiation of MSCs in bone tissue. This would contribute to the implementation of an optimal 3D model for the silk fibroin scaffold, which would ensure uniform differentiation of MSCs into bone tissue cells throughout the construct.
Nonostante, negli ultimi decenni, ci siano stati notevoli avanzamenti nelle tecniche di microchirurgia, per il tessuto osseo ottenere una riparazione funzionale e strutturale soddisfacente dopo il danno, rimane una sfida impegnativa. Infatti, mentre il tessuto osseo mostra alcune caratteristiche intrinseche di ricrescita e auto-ripristino, la capacità delle ossa lese di ripristinare la funzione portante è spesso insufficiente, con conseguente mancato consolidamento della frattura. Finora, le lesioni ossee di dimensioni critiche possono essere curate attraverso l’osteodistrazione di Ilizarov. Nel corso degli anni, però, sono stati condotti molti studi per trovare un modo per guarire attivamente le lesioni ossee e, ad oggi, il gold standard è l’autoinnesto, ovvero l’autotrapianto di tessuto osseo da un’altra zona del corpo del paziente; purtroppo questa tecnica non è ottimale per le lesioni ossee di grandi dimensioni in quanto compromette fortemente il sito di prelievo. Gli scaffold combinati con le cellule stromali mesenchimali (MSCs) sembrano candidati molto promettenti per superare le attuali limitazioni: in questa tesi, sfruttiamo la fibroina della seta per le sue proprietà meccaniche uniche, il tasso di biodegradazione controllabile e l’elevata biocompatibilità per realizzare nuovi costrutti ossei con maggiore efficacia, seminati con MSCs e coltivati in bioreattori con due diversi terreni di coltura: FBS e hPL. Dopo tre settimane di coltura dinamica, i costrutti risultanti (scaffold + cellule) vengono utilizzati per esperimenti post-coltura (inclusi ALP assay, calcium assay, DNA assay e immunoistomicroscopia) o per l’indagine al sincrotrone. Al sincrotrone, i costrutti vengono testati per ottenere immagini ad alta risoluzione, consentrndo per la prima volta di eseguire la valutazione del fallimento guidata da immagini dei costrutti ossei e di ottenere una ricostruzione 3D dell’osso neoformato. Grazie alla risoluzione senza precedenti offerta dal sincrotrone, approfondiamo lo studio dell’interazione cellula-scaffold e le possibili differenze dovute all’uso di diversi terreni di coltura, al fine di dimostrare se una particolare geometria e disposizione dello scaffold influisce o meno sulla differenziazione delle MSCs nel tessuto osseo. Ciò contribuirebbe all’implementazione di un modello 3D ottimale per lo scaffold di fibroina di seta, che garantirebbe una differenziazione uniforme delle MSCs in cellule del tessuto osseo in tutto il costrutto.
Challenges in bone regeneration: high-resolution synchrotron imaging and morpho-mechanical characterization of novel silk fibroin scaffolds
Dei Rossi, Greta
2021/2022
Abstract
Despite considerable advances in microsurgical techniques over the past decades, bone tissue remain a challenging arena to obtain a satisfying functional and structural repair after damage. Indeed, while bone tissue display inherent regrowth and self-restoration features to some extent, the capacity of the injured bones to restore load-bearing function is often insufficient, resulting in fracture nonunion. So far, critically sized bone lesions can be cured through Ilizarov osteodistraction. Over the years, many studies have been performed to find a way of actively healing bone lesions, and to date, the gold standard is the autograft, i.e. the self-transplantation of bone tissue from another area of the patient’s body; unfortunately, this technique is not optimal for large bone lesions as it strongly compromises the donor site. Scaffolds combined with mesenchymal stromal cells (MSCs) appear as very promising candidates to overcome the present limitations; in this thesis, we exploit silk fibroin for its unique mechanical properties, controllable biodegradation rate and high biocompatibility to realize novel bone constructs with increased efficacy, seeded with MSCs and grown in bioreactors with two different culture media: FBS and hPL. After three weeks of dynamic culture, the resulting constructs (scaffold + cells) are used for post-culture experiments (including ALP assay, calcium assay, DNA assay and immunohistomicroscopy) or for synchrotron investigation. At the synchrotron, the constructs are tested in order to obtain high-resolution images, allowing for the first time to perform image-guided failure assessment of bone constructs and to obtain a 3D reconstruction of the newformed bone. Thanks to the unprecedent resolution offered by the synchrotron, we deepen the study of scaffold-cell interaction and the possible differences due to the use of different culture medium, in order to demonstrate whether a particular scaffold geometry and arrangement affects or not the differentiation of MSCs in bone tissue. This would contribute to the implementation of an optimal 3D model for the silk fibroin scaffold, which would ensure uniform differentiation of MSCs into bone tissue cells throughout the construct.File | Dimensione | Formato | |
---|---|---|---|
2022_12_DeiRossi.pdf
non accessibile
Dimensione
34.45 MB
Formato
Adobe PDF
|
34.45 MB | Adobe PDF | Visualizza/Apri |
2022_12_DeiRossi_Executive_Summary.pdf
non accessibile
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/199160