In recent years, electric networks have experienced a massive growth in penetration of distributed generators, mostly based on renewable energy sources. Among other things, this growth has produced several issues related to the reactive flows throughout networks and different voltage levels. The portions of the network which are mostly impacted by this phenomenon are distribution grids. They are historically known as passive networks, in which the conventional energy flow is univocally directed towards loads, that represent the terminal portion of such grid. The ever-growing presence of DG, in addition to reversing the energy flow direction during particular hours of the day, worsens the quality of the supply, in the form of line congestion and voltage problems. In order to address these problems, both European and national regulators, aided by distribution operators, are studying various control strategies to be applied to DGs, which should help to reach a higher quality in the operation of networks. The aim of this thesis is to verify the eventual benefits springing from the introduction of two control algorithms, which are prescribed by the Italian technical regulatory body CEI in the technical regulation CEI 0-16, namely the cosφ=f(P) and the Q=f(V) controls. In view of addressing the problem of grid resilience, the case of a fully cabled network will be inspected, aiming at assessing how the reactive energy flows change and how they affect the quality of the supply. The different analysis are made through the so-called Monte Carlo method, which is a heuristic approach based on repeated random sampling to obtain numerical results. The method is applied on several distributions, which represent the composition of the network, in terms of load and generation, at particular times: one represents the network in 2020, while the other represent a forecast made up to 2030, in order to consider the future evolution of the grid characteristics.
Negli ultimi anni le reti elettriche hanno sperimentato una massiva crescita nella penetrazione della generazione distribuita, principalmente basata sulle risorse energetiche rinnovabili. Tra le altre cose, questa crescita ha prodotto svariati problemi legati ai flussi di potenza reattiva attraverso le reti elettriche e fra differenti livelli di tensione. La porzione di rete che più ha risentito di questo fenomeno è la rete di distribuzione. Quest’ultime sono storicamente conosciute come reti passive in cui il flusso di energia convenzionale è diretto univocamente verso i carichi, che rappresentano l’elemento terminale della rete di trasmissione e distribuzione. La sempre maggiore crescita della GD, in aggiunta all’inversione del flusso di energia durante ore particolari del giorno porta al peggioramento della qualità dell’alimentazione in termini di congestioni di linea e problemi di tensione. Al fine di risolvere questi problemi gli enti regolatori europei e nazionali, aiutati dagli enti distributori, stanno studiando diverse strategie di controllo, da applicare alla GD, che dovrebbero aiutare a raggiungere un più alto livello di qualità del servizio. Lo scopo di questa tesi è di verificare gli eventuali benefici dovuti all’introduzione di due algoritmi di controllo che sono previsti dall’ente regolatore italiano CEI nel regolamento tecnico CEI 0-16, nominati cosφ=f(P) e Q=f(V). Al fine di migliorare la resilienza della rete anche il caso di una rete completamente composta da cavi sarà analizzato, con il fine di analizzare come variano gli scambi di energia reattiva e che effetto hanno sulla qualità del servizio. Le analisi sono state condotte utilizzando il cosiddetto metodo Monte Carlo, che è un approccio euristico basato su ripetute estrazioni randomiche al fine di ottenere un risultato numerico. Diverse analisi sono state condotte su varie distribuzioni, che rappresentano la composizione della rete in momenti particolari: una rappresenta la rete al 2020 mentre le altre rappresentano delle previsioni con termine 2030 al fine di considerare le evoluzioni della rete.
Reactive power flows in distribution networks: an analysis of current and future trends by scenario-based numerical simulations
Ambrosini, Giovanni;Premarini, Stefano
2021/2022
Abstract
In recent years, electric networks have experienced a massive growth in penetration of distributed generators, mostly based on renewable energy sources. Among other things, this growth has produced several issues related to the reactive flows throughout networks and different voltage levels. The portions of the network which are mostly impacted by this phenomenon are distribution grids. They are historically known as passive networks, in which the conventional energy flow is univocally directed towards loads, that represent the terminal portion of such grid. The ever-growing presence of DG, in addition to reversing the energy flow direction during particular hours of the day, worsens the quality of the supply, in the form of line congestion and voltage problems. In order to address these problems, both European and national regulators, aided by distribution operators, are studying various control strategies to be applied to DGs, which should help to reach a higher quality in the operation of networks. The aim of this thesis is to verify the eventual benefits springing from the introduction of two control algorithms, which are prescribed by the Italian technical regulatory body CEI in the technical regulation CEI 0-16, namely the cosφ=f(P) and the Q=f(V) controls. In view of addressing the problem of grid resilience, the case of a fully cabled network will be inspected, aiming at assessing how the reactive energy flows change and how they affect the quality of the supply. The different analysis are made through the so-called Monte Carlo method, which is a heuristic approach based on repeated random sampling to obtain numerical results. The method is applied on several distributions, which represent the composition of the network, in terms of load and generation, at particular times: one represents the network in 2020, while the other represent a forecast made up to 2030, in order to consider the future evolution of the grid characteristics.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Ambrosini_Premarini.pdf
non accessibile
Descrizione: Tesi
Dimensione
16.38 MB
Formato
Adobe PDF
|
16.38 MB | Adobe PDF | Visualizza/Apri |
|
Extended_Abstract_Ambrosini_Premarini.pdf
non accessibile
Descrizione: Extended abstract
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/201215