The decarbonisation of the energy sector has recently been made the priority set in order to fight the harsh battle again global warming. Still, other pollutants such as NOx, SO2 and PM must be assessed given their potential impacts on the environment and on human health. Stationary battery storage solutions have recently been proposed as a way to lower sector emissions. This thesis work was born, with the objective to build a model able to analyse and compare the results of the CO2eq, NOx, SO2 and PM emissions throughout the whole life cycle of the assessed battery following the steps of an LCA methodology. In order to gather accurate data for the modelling and the analysis of the results, a literature review was conducted on the topic of battery storage for stationary applications. Indeed, all life cycle phases, including material extraction, manufacturing & assembly, use phase, as well as end-of-life and transport have been analysed in detail in order to obtain a clear overview. By analysing the state of the art literature regarding this topic, a flexible model was built and implemented in Microsoft Excel to output the desired results, e.g. CO2eq, NOx, SO2 and PM emissions, after inputting the values of the variables envisioned, such as battery chemistry, stationary application, end-of-life solution and the geographies of manufacturing and use phase. The results were structured in 3 different scenarios to assess and compare the impacts stemming from the variations of some of the variables. A sensitivity analysis was also carried out to consider hypothetical future scenarios. The results showed that in general, the NCA chemistry is the best performing across all emission factors, while LFP and NMC usually report the highest emissions. The use phase has proved to be by far the most impacting phase across all emission factors, although the material extraction phase has proven relevant for SO2 and PM emissions, while transport has a non-negligible influence on NOx emissions. The results also show how influential the change in electricity mix can be, especially on the use phase, while boosting the energy densities of the battery impacts all stages but the use phase. Finally, the direct cathode recycling technology was found to be the most promising in terms of avoided emissions.
La decarbonizzazione del settore energetico è recentemente diventata una priorità per la dura lotta al surriscaldamento globale. Tuttavia, altri inquinanti quali NOx, SO2 e PM devono essere esaminati dato il loro potenziale impatto sull’ambiente e sulla salute umana. Le batterie ad uso stazionario sono recentemente state proposte come soluzione per abbassare le emissioni del settore. Questo lavoro di tesi è stato svolto con l’obiettivo di costruire un modello capace di analizzare e comparare i risultati riguardanti le emissioni di CO2eq, NOx, SO2 e PM durante la totalità del ciclo vita della batteria in esame, seguendo gli step della metodologia LCA. Allo scopo di raccogliere dati accurati per la modellizzazione e l’analisi dei risultati, è stata svolta una revisione della letteratura sul tema delle batterie ad uso stazionario. Di conseguenza, tutte le fasi del ciclo di vita, incluse estrazione dei materiali, produzione e assemblaggio, uso, soluzione per il fine vita e trasporto, sono state analizzate in dettaglio in modo da avere una visione completa. Dall’analisi della letteratura, è stato costruito e implementato un modello flessibile in Microsoft Excel capace di fornire risultati in termini di emissioni di CO2eq, NOx, SO2 e PM, dopo aver immesso i valori delle variabili, quali la chimica della batteria, l’applicazione per cui è usata, la soluzione per il fine vita e le geografie riguardanti produzione e uso della batteria. I risultati sono poi stati organizzati in 3 scenari differenti in modo da valutare gli impatti al variare di alcune di queste variabili. Infine, un’analisi di sensitività è stata svolta per studiare ipotetici scenari futuri. I risultati mostrano come, in generale, le batterie NCA performano meglio di tutte le altre per tutti i fattori emissivi, mentre LFP e NMC riportano solitamente i valori di emissioni più alti. La fase d’uso si è dimostrata la più impattante per tutti i fattori emissivi, nonostante la fase di estrazione dei materiali rimanga rilevante per le emissioni di SO2 e PM, e la fase di trasporto abbia un impatto non irrilevante sule emissioni di NOx. I risultati mostrano anche quanto impattante sia la variazione del mix elettrico, specialmente nella fase d’uso, mentre l’aumento delle densità energetiche delle batterie impatta tutte le fasi meno che quella d’uso. Infine, la tecnologia di riciclo “Direct cathode recycling” è risultata la più promettente in termini di emissioni abbattute.
An LCA-based model for GHG and air pollutants of LIBs and VRFBs stationary battery systems
Serafini, Giulio;Brugnoli, Margherita
2021/2022
Abstract
The decarbonisation of the energy sector has recently been made the priority set in order to fight the harsh battle again global warming. Still, other pollutants such as NOx, SO2 and PM must be assessed given their potential impacts on the environment and on human health. Stationary battery storage solutions have recently been proposed as a way to lower sector emissions. This thesis work was born, with the objective to build a model able to analyse and compare the results of the CO2eq, NOx, SO2 and PM emissions throughout the whole life cycle of the assessed battery following the steps of an LCA methodology. In order to gather accurate data for the modelling and the analysis of the results, a literature review was conducted on the topic of battery storage for stationary applications. Indeed, all life cycle phases, including material extraction, manufacturing & assembly, use phase, as well as end-of-life and transport have been analysed in detail in order to obtain a clear overview. By analysing the state of the art literature regarding this topic, a flexible model was built and implemented in Microsoft Excel to output the desired results, e.g. CO2eq, NOx, SO2 and PM emissions, after inputting the values of the variables envisioned, such as battery chemistry, stationary application, end-of-life solution and the geographies of manufacturing and use phase. The results were structured in 3 different scenarios to assess and compare the impacts stemming from the variations of some of the variables. A sensitivity analysis was also carried out to consider hypothetical future scenarios. The results showed that in general, the NCA chemistry is the best performing across all emission factors, while LFP and NMC usually report the highest emissions. The use phase has proved to be by far the most impacting phase across all emission factors, although the material extraction phase has proven relevant for SO2 and PM emissions, while transport has a non-negligible influence on NOx emissions. The results also show how influential the change in electricity mix can be, especially on the use phase, while boosting the energy densities of the battery impacts all stages but the use phase. Finally, the direct cathode recycling technology was found to be the most promising in terms of avoided emissions.File | Dimensione | Formato | |
---|---|---|---|
An LCA-based model for GHG and air pollutants of LIBs and VRFBs stationary battery systems.pdf
accessibile in internet per tutti
Dimensione
8.5 MB
Formato
Adobe PDF
|
8.5 MB | Adobe PDF | Visualizza/Apri |
Executive summary.pdf
accessibile in internet per tutti
Dimensione
823.16 kB
Formato
Adobe PDF
|
823.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/201223