Nowadays, valuable fine chemicals, such as pharmaceuticals and polymers, are produced using discontinuous processes. Nonetheless, the always increasing demand of these goods highlights several limitations of the discontinuous processes in terms of safety, productivity, quality control, and operating costs. All these issues are strongly mitigated shifting the process to the continuous mode, which typically needs smaller volumes to reach the same productivity, achieves constant quality outputs, and provides higher thermal efficiency when tubular reactors are considered. This work aims at proposing a methodology to perform an efficient transition of a homogeneous polymerization process from the discontinuous to the continuous mode. Considering a typical semi-batch process of production of polyacrylic acid, the shift to a continuous reactor setup is studied. First, using a previously developed approach, the feed flow rates to be used in a tubular reactor with continuous lateral feed, suitable to reproduce the same polymer quality of the semi-batch process, are designed. Notably, such step is carried out without the need of knowing the reaction kinetics, which makes the methodology extremely valuable. Then, given the unrealistic reactor type used in the first step, a series of three tubular as well as of three stirred reactors are considered. In these cases, the previously predicted feed flow rates are discretized at the inlet of each module. The performances of the two discrete layouts are validated on a wide range of polymerization reactions originally conducted in semi-batch reactors. In particular, the series of three tubular reactors is very effective in achieving the same productivity of the original process but it is quite poor in reproducing the polymer quality. On the other hand, the series of three stirred tanks reproduces very accurately the quality of the polymer while achieving less productivity than the original semi-batch process. Overall, the results show a close connection between the ability of the selected configuration to reproduce the performances of the discontinuous process and the reactivity of the system. Therefore, the previous results are finally revisited using the dimensionless number of Damköhler as evolutionary coordinate.
Ad oggi i prodotti di chimica fine con valore aggiunto come farmaci e polimeri, sono ottenuti tramite processi discontinui. Tuttavia, la crescete richiesta di questi beni ha messo in evidenza molti punti deboli dei processi discontinui in termini di sicurezza, produttività, qualità del prodotto e costi. Tali problemi possono essere ridotti attraverso l’uso di processi continui, che generalmente necessitano di volumi di reazione più piccoli per raggiungere la stessa produttività, permettono di ottenere prodotti di qualità costante e garantiscono maggiore efficienza termica. Questa tesi ha l’obiettivo di proporre un metodo per eseguire un’efficiente transizione di un processo di polimerizzazione omogenea da una configurazione discontinua ad una continua. Per prima cosa, considerato un reattore tubolare con alimentazioni laterali continue capace di riprodurre un polimero con le stesse qualità di quello ottenuto da un processo semi-batch, ne sono state calcolate le portate da alimentare grazie ad un approccio preesistente. In particolare, questa fase viene effettuata senza l’utilizzo della cinetica di reazione, il che rende questo metodo interessante. In seguito, essendo il processo continuo precedentemente descritto poco realistico, una serie di tre reattori tubolari e una di tre reattori completamente miscelati sono state considerate. Le portate calcolate in precedenza sono state discretizzate e alimentate all’ingresso di ogni reattore della serie. Le performance delle due configurazioni sono state analizzate in riferimento ad un ampio range di polimerizzazioni. La serie di tre reattori tubolari ha mostrato grande efficacia nel raggiungimento della stessa produttività del processo originale, ma scarsa capacità nel riprodurre una buona qualità del prodotto finale. Dall’altra parte, la serie di tre reattori completamente miscelati riproduce accuratamente la qualità del polimero, ma raggiunge livelli di produttività minori rispetto all’originale processo discontinuo. Complessivamente, i risultati mostrano una stretta relazione tra la capacità delle configurazioni continue di riprodurre le performance del processo discontinuo e la reattività del sistema analizzato. Dunque, i precedenti risultati sono stati rianalizzati in funzione del numero adimensionale di Damköhler.
From discontinuous to continuous operating modes: polymer reaction systems
Palladino, Francesca
2021/2022
Abstract
Nowadays, valuable fine chemicals, such as pharmaceuticals and polymers, are produced using discontinuous processes. Nonetheless, the always increasing demand of these goods highlights several limitations of the discontinuous processes in terms of safety, productivity, quality control, and operating costs. All these issues are strongly mitigated shifting the process to the continuous mode, which typically needs smaller volumes to reach the same productivity, achieves constant quality outputs, and provides higher thermal efficiency when tubular reactors are considered. This work aims at proposing a methodology to perform an efficient transition of a homogeneous polymerization process from the discontinuous to the continuous mode. Considering a typical semi-batch process of production of polyacrylic acid, the shift to a continuous reactor setup is studied. First, using a previously developed approach, the feed flow rates to be used in a tubular reactor with continuous lateral feed, suitable to reproduce the same polymer quality of the semi-batch process, are designed. Notably, such step is carried out without the need of knowing the reaction kinetics, which makes the methodology extremely valuable. Then, given the unrealistic reactor type used in the first step, a series of three tubular as well as of three stirred reactors are considered. In these cases, the previously predicted feed flow rates are discretized at the inlet of each module. The performances of the two discrete layouts are validated on a wide range of polymerization reactions originally conducted in semi-batch reactors. In particular, the series of three tubular reactors is very effective in achieving the same productivity of the original process but it is quite poor in reproducing the polymer quality. On the other hand, the series of three stirred tanks reproduces very accurately the quality of the polymer while achieving less productivity than the original semi-batch process. Overall, the results show a close connection between the ability of the selected configuration to reproduce the performances of the discontinuous process and the reactivity of the system. Therefore, the previous results are finally revisited using the dimensionless number of Damköhler as evolutionary coordinate.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Palladino.pdf
accessibile in internet per tutti
Dimensione
3.95 MB
Formato
Adobe PDF
|
3.95 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Palladino.pdf
accessibile in internet per tutti
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/201255