Nowadays, decision support systems based on Artificial Intelligence are widely deployed as tool for enhancing clinical decision process. The usage of models capable of automat- ically analyze images is quite often actualized through the deployment of Convolutional Neural Network. Among the variety of the clinical images usually used, the most com- monly employed type when dealing with orthopedic diseases is the radiography, that is a non invasive, relatively not expensive and accessible technique for obtaining an internal view. This study aims to enhance the prediction of failed prosthesis in total hip arthroplasty by combining multiple radiography in sequences that are fed as the input of a neural net- work. By including this input a temporal component in addition to the spatial features contained in the individual images, the proposed architectures differ from classical con- volutional networks by exploiting also a recurrent neural network section. Initially, the characteristics of the available data are analyzed in depth. The images are processed to decrease their variety and to face eventual visual noise and artifacts, being these images of routine clinical visits. Two different architecture paradigms are proposed and inspected, each of which has the ability to extract both spatial and temporal features from the given sequence. The strengths and weaknesses of the proposed models are revealed through experiments conducted with the available data, trying to point out which is the most effective choice. Some comparison are made with respect to the specific sequence used, regarding its length and its specific composition. Once the networks are trained, their performance is evaluated against a separate set of data in order to obtain unbiased indices. The study highlights that using a more complex input generally improved performance compared with using a single radiography, but model optimization is strongly influenced by the quality of the available data. Future studies should focus on comparing these architectures using more robust dataset.
Al giorno d’oggi, i sistemi di supporto decisionale basati sull’intelligenza artificiale sono ampiamente utilizzati come strumento per migliorare il processo decisionale in ambito clinico. L’uso di modelli in grado di analizzare automaticamente le immagini è spesso at- tuato attraverso l’impiego di reti neurali convolutive. Tra la varietà di immagini cliniche solitamente utilizzate, il tipo più comunemente impiegato quando si tratta con patologie ortopediche è la radiografia, che è una tecnica non invasiva, relativamente poco costosa e accessibile per ottenere una visione interna. Questo studio punta a migliorare la previsione del fallimento della protesi successivamente ad un’artroplastica totale dell’anca combinando più radiografie in sequenze che vengono passate come input ad una rete neurale. Includendo una componente temporale in ag- giunta alle caratteristiche spaziali contenute nelle singole immagini, le architetture pro- poste si differenziano dalle classiche reti convolutive sfruttando anche una sezione formata da una rete neurale ricorrente. Inizialmente, le caratteristiche dei dati disponibili vengono analizzate. Le radiografie vengono processate per diminuire la loro varianza e per limitare eventuali rumori visivi e artefatti, trattandosi di immagini di visite cliniche di routine. Vengono proposte e analizzate due diverse architetture, ognuna delle quali ha la capacità di estrarre caratteristiche sia spaziali che temporali dalla sequenza data in input. I punti di forza e di debolezza dei modelli proposti sono evidenziati attraverso esperimenti condotti con i dati a disposizione, cercando di dimostrare la scelta più efficace. Alcuni confronti vengono fatti in relazione alla specifica sequenza utilizzata, riguardo la sua lunghezza e la specifica composizione. Una volta addestrate, le prestazioni delle reti vengono valutate rispetto a un dataset separato, al fine di ottenere degli indici di prestazione imparziali. Lo studio evidenzia che l’utilizzo di un input più complesso migliora nel complesso le prestazioni rispetto all’utilizzo di una singola radiografia, ma l’ottimizzazione del modello è fortemente influenzata dalla qualità dei dati disponibili. Studi futuri dovrebbero con- centrarsi sul confronto di queste architetture utilizzando set di dati più robusto.
Hip prosthesis failure prediction through radiological deep sequence learning
MASCIULLI, FRANCESCO
2021/2022
Abstract
Nowadays, decision support systems based on Artificial Intelligence are widely deployed as tool for enhancing clinical decision process. The usage of models capable of automat- ically analyze images is quite often actualized through the deployment of Convolutional Neural Network. Among the variety of the clinical images usually used, the most com- monly employed type when dealing with orthopedic diseases is the radiography, that is a non invasive, relatively not expensive and accessible technique for obtaining an internal view. This study aims to enhance the prediction of failed prosthesis in total hip arthroplasty by combining multiple radiography in sequences that are fed as the input of a neural net- work. By including this input a temporal component in addition to the spatial features contained in the individual images, the proposed architectures differ from classical con- volutional networks by exploiting also a recurrent neural network section. Initially, the characteristics of the available data are analyzed in depth. The images are processed to decrease their variety and to face eventual visual noise and artifacts, being these images of routine clinical visits. Two different architecture paradigms are proposed and inspected, each of which has the ability to extract both spatial and temporal features from the given sequence. The strengths and weaknesses of the proposed models are revealed through experiments conducted with the available data, trying to point out which is the most effective choice. Some comparison are made with respect to the specific sequence used, regarding its length and its specific composition. Once the networks are trained, their performance is evaluated against a separate set of data in order to obtain unbiased indices. The study highlights that using a more complex input generally improved performance compared with using a single radiography, but model optimization is strongly influenced by the quality of the available data. Future studies should focus on comparing these architectures using more robust dataset.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Masciulli_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
6.28 MB
Formato
Adobe PDF
|
6.28 MB | Adobe PDF | Visualizza/Apri |
2022_12_Masciulli_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
513.38 kB
Formato
Adobe PDF
|
513.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/201396