Biosensors are analytic devices able to detect chemical substances through biorecognition elements and which can produce a measurable signal in response. They represent an appealing solution in clinic diagnostics thanks to their sensitivity, precision, data reproducibility and the limited cost. In addition, they can be used directly by patients, due to their ease-to-use technology and the short time required for testing. This master thesis focuses on the development of three different types of biosensors: a polymeric one for the detection of volatile organic compounds (VOCs), as lung cancer markers, an enzymatic biosensor and an aptasensor, for the detection of glycated albumin (GA), as diabetes marker. The first objective was to obtain a MIP-based sensor for the detection of volatile compounds: molecularly imprinted polymer (MIP) technology is based on adding template molecules to the polymeric solution before polymerization, in order to obtain a polymeric matrix with nano-cavities with dimension and shape of specific compounds. Multi-walled carbon nanotubes (MWCNTs) were added to the polymeric solution to obtain conductive polymer matrices, able to generate electrical signals, depending on the adsorption of the targeted molecules. Preliminary experiments were carried out using commercial or custom-made polymers to verify their conductivity with MWCNTs and to assess the absorption of some volatile compounds. In addition, a controlled polymerization on MWCNT surface was performed in order to obtain a more homogeneous polymer layer around the carbon nanotubes. In the second part of the thesis, biosensors for the detection of glycated albumin (GA) are investigated. Regarding the enzymatic biosensors, their key working parameters were optimised, using glucose as substrate and glucose oxidase (GOx) as enzyme. UV analysis and electrical measurements on specific sensors were carried out, aiming to develop a sensor for the detection of GA. In the case of aptasensor, a fluorescence analysis was firstly performed in order to assess the selectivity of the aptamer for GA, then preliminary electrical measurements were conducted to verify the feasibility of this biosensor technology. In all cases, Inter-digitated electrodes (IDEs) were employed for recording the electrical signals, which was analysed and processed by a dedicated computer software.
I biosensori sono dei dispositivi analitici in grado di rilevare sostanze chimiche attraverso elementi di bioriconoscimento e di produrre un segnale misurabile in risposta. Essi rappresentano una soluzione innovativa nella diagnostica clinica per la sensitività, la precisione, la riproducibilità dei dati e i vantaggi di costo che li caratterizzano. In aggiunta, possono essere utilizzati direttamente dai pazienti grazie alla facile tecnologia di utilizzo e alla velocità di risposta. Questo lavoro di tesi magistrale si focalizza sullo sviluppo di tre tipologie di biosensori: uno polimerico per il rilevamento di composti volatili organici (VOCs), come i marker del tumore al polmone, uno enzimatico e un aptasensore per il rilevamento dell’albumina glicata (GA) come marker del diabete. Il primo obiettivo è quello di ottenere un sensore basato sulla tecnologia dei polimeri a stampo molecolare (MIPs) per il rilevamento di sostanze volatili. La tecnologia MIP prevede l’aggiunta di molecole template alla soluzione polimerica prima della polimerizzazione, al fine di ottenere una matrice con nanocavità aventi morfologia analoga a quella di composti di interesse. Inoltre, i nanotubi di carbonio a parete multipla (MWCNTs) sono stati aggiunti alla soluzione polimerica per sintetizzare matrici conduttive in grado di generare segnali elettrici in risposta all’assorbimento di molecole target. Alcuni esperimenti preliminari sono stati condotti utilizzando polimeri commerciali o sintetizzati appositamente, per verificarne la conduttività a seguito della funzionalizzazione con i MWCNTs e l’assorbimento di specifici composti volatili. Al fine di depositare uno strato omogeneo di polimero intorno ai nanotubi di carbonio, è stata eseguita una polimerizzazione controllata sulla superficie dei MWCNTs. La seconda parte della tesi è, invece, focalizzata sui biosensori per il rilevamento dell’albumina glicata (GA). Riguardo i biosensori enzimatici, i principali parametri di funzionamento sono stati ottimizzati sfruttando il glucosio come substrato e la glucossidasi (GOx) come enzima. Delle analisi UV e delle misure elettriche su sensori specifici sono state eseguite con l’obiettivo di sviluppare in futuro un biosensore per il rilevamento della GA. Nel caso degli aptasensori, un’analisi in fluorescenza è stata prima eseguita per confermare la selettività dell’aptamero per la GA; successivamente, sono state effettuate delle misurazioni elettriche per verificare l’affidabilità della tecnologia alla base del biosensore. In tutti i casi, degli elettrodi interdigitati (IDEs) sono stati sfruttati per registrare i segnali elettrici, successivamente analizzati e processati mediante un apposito software.
Inter-digitated electrode-based sensors to detect volatile and non-volatile biomarkers for medical diagnostics
Brizi, Giuseppe
2022/2023
Abstract
Biosensors are analytic devices able to detect chemical substances through biorecognition elements and which can produce a measurable signal in response. They represent an appealing solution in clinic diagnostics thanks to their sensitivity, precision, data reproducibility and the limited cost. In addition, they can be used directly by patients, due to their ease-to-use technology and the short time required for testing. This master thesis focuses on the development of three different types of biosensors: a polymeric one for the detection of volatile organic compounds (VOCs), as lung cancer markers, an enzymatic biosensor and an aptasensor, for the detection of glycated albumin (GA), as diabetes marker. The first objective was to obtain a MIP-based sensor for the detection of volatile compounds: molecularly imprinted polymer (MIP) technology is based on adding template molecules to the polymeric solution before polymerization, in order to obtain a polymeric matrix with nano-cavities with dimension and shape of specific compounds. Multi-walled carbon nanotubes (MWCNTs) were added to the polymeric solution to obtain conductive polymer matrices, able to generate electrical signals, depending on the adsorption of the targeted molecules. Preliminary experiments were carried out using commercial or custom-made polymers to verify their conductivity with MWCNTs and to assess the absorption of some volatile compounds. In addition, a controlled polymerization on MWCNT surface was performed in order to obtain a more homogeneous polymer layer around the carbon nanotubes. In the second part of the thesis, biosensors for the detection of glycated albumin (GA) are investigated. Regarding the enzymatic biosensors, their key working parameters were optimised, using glucose as substrate and glucose oxidase (GOx) as enzyme. UV analysis and electrical measurements on specific sensors were carried out, aiming to develop a sensor for the detection of GA. In the case of aptasensor, a fluorescence analysis was firstly performed in order to assess the selectivity of the aptamer for GA, then preliminary electrical measurements were conducted to verify the feasibility of this biosensor technology. In all cases, Inter-digitated electrodes (IDEs) were employed for recording the electrical signals, which was analysed and processed by a dedicated computer software.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Brizi.pdf
non accessibile
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF | Visualizza/Apri |
2022_12_Brizi_ExecutiveSummary.pdf
non accessibile
Dimensione
948.78 kB
Formato
Adobe PDF
|
948.78 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/201525