In recent years, the behavior of deteriorating Reinforced Concrete (RC) structures has gained prominence in the scientific community. The assessment of the interaction between short- and long-term deterioration phenomena of RC members is a relevant research topic. In this context, various experimental activities have been carried out and analytical models have been proposed to characterize the response of RC elements under cyclic loading and corrosion processes. This thesis aims at providing a comprehensive review on both experimental evidence and numerical models for the hysteretic behavior of RC structural systems subjected to corrosion. Concerning typical nonlinear modeling strategies characterized by distributed and lumped plasticity models, advantages and drawbacks are presented and discussed in terms of computational cost and numerical accuracy. Specific attention is devoted to reviewing proposed approaches and simplified formulations for the empirical-based calibration for the fundamental parameters of typical nonlinear models, generally defined based on experimental cyclic tests on pristine RC specimens. In this thesis, the numerical calibration of constitutive models based on these predictive formulations is validated on three experimental cyclic tests carried out on corroded members with the aid of nonlinear cyclic pushover analysis. The results of the investigated case studies suggest that the formulation of suitable mathematical optimization problems would improve the calibration of predictive models for corroded members, fostering the accuracy of numerical models for life-cycle safety, performance, reliability, and risk assessment of RC structural systems and infrastructure networks.
La valutazione a ciclo di vita delle prestazioni di strutture in calcestruzzo armato (CA) ha acquisito notevole importanza nella comunità scientifica e, nello specifico, la valutazione dell'interazione tra fenomeni di danneggiamento meccanico e degrado di lungo termine rappresenta una tematica di particolare rilevanza. In questo contesto sono state condotte numerose indagini sperimentali su elementi in CA sotto carico ciclico e processi di corrosione al fine di calibrare opportunamente i modelli meccanici per la valutazione della risposta strutturale. Questa tesi si propone di fornire uno stato dell’arte aggiornato sulle evidenze empiriche e sui modelli numerici relativi al comportamento isteretico di strutture in CA soggette a fenomeni di corrosione. Vengono presentati e discussi vantaggi e svantaggi in termini di costo computazionale e accuratezza numerica per alcune delle più comuni strategie di modellazione non lineare a plasticità concentrata e distribuita. Particolare attenzione viene dedicata alla revisione degli approcci proposti e delle formulazioni semplificate di letteratura per la calibrazione su base empirica dei parametri fondamentali dei legami costitutivi nonlineari, generalmente calibrati sulla base di prove cicliche sperimentali su provini in CA in condizioni integre. In questa tesi, la calibrazione numerica basata su queste formulazioni viene sviluppata e validata su tre prove cicliche eseguite su elementi soggetti a corrosione mediante analisi statica nonlineare con carico ciclico. I risultati dei casi di studio esaminati suggeriscono che la formulazione di adeguati problemi di ottimizzazione matematica migliorerebbe la calibrazione dei modelli predittivi con degrado da corrosione, migliorando l'accuratezza dei modelli numerici per la valutazione di sicurezza, affidabilità e rischio a ciclo di vita di sistemi strutturali e reti infrastrutturali.
Hysteretic behavior of reinforced concrete structures under corrosion
Micheli, Ermanno
2021/2022
Abstract
In recent years, the behavior of deteriorating Reinforced Concrete (RC) structures has gained prominence in the scientific community. The assessment of the interaction between short- and long-term deterioration phenomena of RC members is a relevant research topic. In this context, various experimental activities have been carried out and analytical models have been proposed to characterize the response of RC elements under cyclic loading and corrosion processes. This thesis aims at providing a comprehensive review on both experimental evidence and numerical models for the hysteretic behavior of RC structural systems subjected to corrosion. Concerning typical nonlinear modeling strategies characterized by distributed and lumped plasticity models, advantages and drawbacks are presented and discussed in terms of computational cost and numerical accuracy. Specific attention is devoted to reviewing proposed approaches and simplified formulations for the empirical-based calibration for the fundamental parameters of typical nonlinear models, generally defined based on experimental cyclic tests on pristine RC specimens. In this thesis, the numerical calibration of constitutive models based on these predictive formulations is validated on three experimental cyclic tests carried out on corroded members with the aid of nonlinear cyclic pushover analysis. The results of the investigated case studies suggest that the formulation of suitable mathematical optimization problems would improve the calibration of predictive models for corroded members, fostering the accuracy of numerical models for life-cycle safety, performance, reliability, and risk assessment of RC structural systems and infrastructure networks.File | Dimensione | Formato | |
---|---|---|---|
2022_12_Micheli.pdf
non accessibile
Descrizione: Hysteretic behavior of reinforced concrete structures under corrosion
Dimensione
9.11 MB
Formato
Adobe PDF
|
9.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/201755