Platelets are specialized anuclear blood cells that play crucial roles in physiologic and pathologic processes of hemostasis, inflammation, tumor metastasis, wound healing, and host defense. It is important to understand platelet structure, biochemistry, physiology, and pathology to promote the development of physiological function and block their involvement in thrombotic processes. The study of the role of platelets requires reliable platelet function tests, to investigate ischemic vascular diseases and processes like bleeding, hemostasis, and thrombosis. The aim of this project is to investigate and find functional experimental conditions that allow to study the effects of antiplatelet agents, rather than disorders caused by defects in platelet receptors or their signaling pathways. For that purpose, thrombus formation in a microfluidic system was tested, as well as platelet adhesion and the effects of PDMPs and shear stress on platelet function and behavior over extracellular matrix (ECM) protein substrates. To perform these tasks, the microfluidic platform for studies of thrombus formation under flow was exploited. Adhesion of platelets to blood vessel walls is a shear stress dependent process, indeed microfluidic flow chambers was coated with ECM proteins, becoming useful to analyze such phenomenon. Hirudin anticoagulated blood in absence and in presence of microparticles was perfused at different shear levels, 13.5 dyne/cm2 that represents the venous flow condition, 49.5 dyne/cm2 the large arteries flow condition and 72 dyne/cm2, that represents the slightly stenotic vessels flow condition. Four proteins were analyzed, fibrinogen, laminin, fibronectin and vitronectin. Four parameters were analyzed: the surface coverage that represents the area covered by thrombi, the number of thrombi, the mean thrombus area and the mean fluorescence intensity that represents the size of the aggregates. From the present work, it was possible to confirm that the level of adhesion of platelets to the substrates is strongly dependent on the imposed shear rate, and the strength of the platelet-protein binding. The platelet deposition rate gradually increased with increasing shear stress, while the highest shear stress value led to detachment events. Fibrinogen emerged as a primary ligand for platelets, and that could be exploited to study different topics. In presence of PDMPs, the trends were the same as in the control experiments for the four protein substrates. At each shear level, the addition of microparticles led to a reduction in the surface coverage, in the mean thrombus area and in the mean fluorescence intensity, while the number of thrombi increased. Despite many interesting findings, the significance of PDMPs in various clinical conditions and their effects on the platelet adhesion and aggregation processes remains controversial and still needs to be deepened, as well as the influence of extracellular matrix proteins. The microfluidic platform designed to observe platelet adhesion and thrombus formation on surfaces coated with adhesive proteins have become a valuable tool for research in hemostasis and thrombosis.
Le piastrine sono cellule del sangue senza nucleo specializzate che svolgono un ruolo cruciale nei processi fisiologici e patologici di emostasi, infiammazione, metastasi tumorali, guarigione delle ferite e difesa. È importante comprendere la struttura, la biochimica, la fisiologia e la patologia delle piastrine per promuovere lo sviluppo della funzione fisiologica e bloccarne il coinvolgimento nei processi trombotici. Lo studio del ruolo delle piastrine richiede test di funzionalità piastrinica affidabili, per indagare malattie vascolari ischemiche e processi come sanguinamento, emostasi e trombosi. Lo scopo di questo progetto è indagare e trovare condizioni sperimentali funzionali che consentono di studiare gli effetti degli agenti antipiastrinici, piuttosto che i disturbi causati da difetti nei recettori piastrinici o nelle loro vie di segnalazione. Per questo scopo, è stata testata la formazione di trombi in un sistema microfluidico, così come l'adesione piastrinica e gli effetti di microparticelle e shear stress sulla funzione piastrinica, utilizzando coating di matrice extracellulare (ECM). Per indagare questi ambiti, è stata sfruttata la piattaforma microfluidica per gli studi sulla formazione di trombi in flusso. L'adesione delle piastrine alle pareti dei vasi sanguigni è un processo dipendente dallo shear stress; infatti, i canali del chip sono state rivestite con proteine della ECM, diventando utili per analizzare tale fenomeno. Il sangue anticoagulato con irudina in assenza e in presenza di microparticelle è stato perfuso a diversi livelli di shear: 13.5 dyne/cm2 che rappresenta la condizione del flusso venoso, 49.5 dyne/cm2 la condizione del flusso delle grandi arterie e 72 dyne/cm2, che rappresenta il flusso dei vasi leggermente stenotici condizione. Sono state analizzate quattro proteine, fibrinogeno, laminina, fibronectina e vitronectina. Sono stati analizzati quattro parametri: la copertura superficiale che rappresenta l'area coperta da trombi, il numero di trombi, l'area media del trombo e l'intensità media di fluorescenza che rappresenta la dimensione degli aggregati. È stato possibile confermare che il livello di adesione delle piastrine ai substrati è fortemente dipendente dalla velocità di taglio imposta e dalla forza del legame piastrine-proteine. Il tasso di deposizione delle piastrine aumentava gradualmente con l'aumentare dello stress da taglio, mentre il valore dello stress da taglio più elevato portava al distacco dei trombi. Il fibrinogeno è emerso come ligando primario per le piastrine e potrebbe essere sfruttato per studiare altri temi. In presenza di PDMP, le tendenze erano le stesse degli esperimenti di controllo per i quattro substrati proteici. Per ogni valore di shear, l'aggiunta di microparticelle ha portato ad una riduzione della copertura superficiale, dell'area media del trombo e dell'intensità media della fluorescenza, mentre il numero di trombi è aumentato. Nonostante molti risultati interessanti, il significato delle PDMPs in varie condizioni cliniche e i loro effetti sui processi di adesione e aggregazione piastrinica rimane controverso e deve ancora essere approfondito, così come l'influenza delle proteine della matrice extracellulare. La piattaforma microfluidica progettata per osservare l'adesione piastrinica e la formazione di trombi su superfici rivestite con proteine adesive è diventata uno strumento prezioso per la ricerca nell'emostasi e nella trombosi.
The effect of circulating platelet-derived microparticles on platelet adhesion under flow - a microfluidic approach
Zucchi, Anna
2022/2023
Abstract
Platelets are specialized anuclear blood cells that play crucial roles in physiologic and pathologic processes of hemostasis, inflammation, tumor metastasis, wound healing, and host defense. It is important to understand platelet structure, biochemistry, physiology, and pathology to promote the development of physiological function and block their involvement in thrombotic processes. The study of the role of platelets requires reliable platelet function tests, to investigate ischemic vascular diseases and processes like bleeding, hemostasis, and thrombosis. The aim of this project is to investigate and find functional experimental conditions that allow to study the effects of antiplatelet agents, rather than disorders caused by defects in platelet receptors or their signaling pathways. For that purpose, thrombus formation in a microfluidic system was tested, as well as platelet adhesion and the effects of PDMPs and shear stress on platelet function and behavior over extracellular matrix (ECM) protein substrates. To perform these tasks, the microfluidic platform for studies of thrombus formation under flow was exploited. Adhesion of platelets to blood vessel walls is a shear stress dependent process, indeed microfluidic flow chambers was coated with ECM proteins, becoming useful to analyze such phenomenon. Hirudin anticoagulated blood in absence and in presence of microparticles was perfused at different shear levels, 13.5 dyne/cm2 that represents the venous flow condition, 49.5 dyne/cm2 the large arteries flow condition and 72 dyne/cm2, that represents the slightly stenotic vessels flow condition. Four proteins were analyzed, fibrinogen, laminin, fibronectin and vitronectin. Four parameters were analyzed: the surface coverage that represents the area covered by thrombi, the number of thrombi, the mean thrombus area and the mean fluorescence intensity that represents the size of the aggregates. From the present work, it was possible to confirm that the level of adhesion of platelets to the substrates is strongly dependent on the imposed shear rate, and the strength of the platelet-protein binding. The platelet deposition rate gradually increased with increasing shear stress, while the highest shear stress value led to detachment events. Fibrinogen emerged as a primary ligand for platelets, and that could be exploited to study different topics. In presence of PDMPs, the trends were the same as in the control experiments for the four protein substrates. At each shear level, the addition of microparticles led to a reduction in the surface coverage, in the mean thrombus area and in the mean fluorescence intensity, while the number of thrombi increased. Despite many interesting findings, the significance of PDMPs in various clinical conditions and their effects on the platelet adhesion and aggregation processes remains controversial and still needs to be deepened, as well as the influence of extracellular matrix proteins. The microfluidic platform designed to observe platelet adhesion and thrombus formation on surfaces coated with adhesive proteins have become a valuable tool for research in hemostasis and thrombosis.File | Dimensione | Formato | |
---|---|---|---|
2023_05_Zucchi_Tesi.pdf
non accessibile
Dimensione
3.37 MB
Formato
Adobe PDF
|
3.37 MB | Adobe PDF | Visualizza/Apri |
2023_05_Zucchi_Executive_Summary.pdf
non accessibile
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/202652