Over the past years, there has been a significant push towards developing innovative thruster designs that can enhance the efficiency of propulsion systems. One that has gained attention is the pulse detonation engine (PDE). This type of internal combustion engine uses detona- tion waves to generate thrust, offering potential advantages in terms of higher efficiency and greater power density. PDEs have the potential to significantly impact both aeronautics and space applications. In aeronautics, PDEs could offer significant advantages in terms of re- ducing fuel consumption, increasing range and speed, and decreasing emissions, particularly for military applications. In space applications, PDEs could enable more efficient and faster space travel and in-orbit maneuver. The analysis of the PDE concept in this work involves exploring variations in both geometri- cal design and operating conditions to understand their impact on the engine’s performance. Single cycle CFD simulations are utilized to investigate changes in performance under dif- ferent conditions. The DDTFoam solver, available on OpenFOAM 2.1, is used to simulate the detonation phe- nomenon. It’s a density-based solver that resolves the unsteady, compressible Navier-Stokes equations, using the HLLC scheme with multidimensional slope delimiters to determine con- vective fluxes. For modeling the reactive flow field of premixed hydrogen-air mixture, the solver uses the URANS second-order approximate Riemann solver and the O’ Coinare reac- tion scheme to model the reaction mechanism. The deflagrative part of the solver, based on the PISO algorithm, is modeled by the Weller combustion model, while the detonative part is based on the auto-ignition delay time. This study conducted a parametric investigation of different nozzle configurations, a di- verging conical nozzle and a parabolic nozzle, to evaluate the evolution of the flow field and propulsive performance using single-pulse finite time computations. The results indicate that the presence of a nozzle may improve PDE performances by increasing thrust delivery during the burning and blow-down phases. Furthermore, the study suggested that filling the entire nozzle domain with the detonable mixture may have negative effects on PDE performance. The investigation also analyzed low external ambient pressure conditions, demonstrating an increase in performance under such circumstances. Finally, to ensure the accuracy and reliability of the results obtained from the parametric investigation, a 3D simulation was conducted to validate the computational model used.
Negli ultimi anni c’è stato un significativo impulso verso lo sviluppo di propulsori che pos- sano potenzialmente migliorare l’efficienza dei sistemi propulsivi attualmente in uso. Uno di questi è il motore ad onda di detonazione (PDE). Questo tipo di motore a combustione interna utilizza onde di detonazione per generare spinta, offrendo potenziali vantaggi in ter- mini di maggiore efficienza e maggiore densità di potenza. I PDE hanno il potenziale per impattare significativamente sia sulle applicazioni aerospaziali che spaziali. In campo aero- nautico, i PDE potrebbero offrire significativi vantaggi in termini di riduzione del consumo di carburante, aumento di autonomia e velocità, e diminuzione delle emissioni, in partico- lare per applicazioni militari. In applicazioni spaziali, i PDE potrebbero permettere viaggi spaziali e manovre orbitali più efficienti e veloci. In questo studio, l’analisi del concetto PDE comporta l’esplorazione delle variazioni sia nella progettazione geometrica che nelle condizioni operative per comprendere il loro impatto sulle prestazioni. Simulazioni di fluidodinamica computazionale (CFD) a singolo ciclo vengono utilizzate per indagare le variazioni delle prestazioni in diverse condizioni. Il solver DDTFoam, disponibile su OpenFOAM 2.1, viene utilizzato per simulare il fenomeno della detonazione. Si tratta di un ’density-based solver’ che risolve le equazioni di Navier- Stokes instazionarie e compressibili, utilizzando lo schema HLLC con delimitatori di pen- denza multidimensionali per determinare i flussi convettivi. Per modellizzare il campo di flusso reattivo di una miscela di idrogeno-aria pre-miscelata, viene utilizzato un risolutore approssimato di secondo ordine URANS e lo schema di reazione di O’ Coinare per modellare il meccanismo di reazione. La parte deflagrativa del solver, basata sull’ algoritmo PISO, viene simulata con il modello di Weller mentre la parte detonativa è basata sul tempo di ritardo di auto-accensione. Questo studio ha condotto un’indagine parametrica di diverse configurazioni di ugelli, con- ico divergente e parabolico, per valutare l’evoluzione del campo di flusso e le prestazioni propulsive. I risultati indicano che la presenza di un ugello può migliorare le prestazioni aumentando la spinta durante le fasi di combustione e di espansione dei gas combusti. In- oltre, lo studio ha suggerito che riempire l’intero dominio dell’ugello con la miscela detonabile potrebbe avere effetti negativi sulle prestazioni del PDE. L’indagine ha anche analizzato le condizioni di bassa pressione ambientale esterna, dimostrando un aumento delle prestazioni in tali circostanze. Infine, per garantire l’accuratezza e l’affidabilità dei risultati ottenuti dall’indagine para- metrica, è stata condotta una simulazione in 3D per convalidare il modello computazionale utilizzato
Numerical investigation and propulsive performance evaluation of pulse detonation thruster
SOMMA, UMBERTO
2022/2023
Abstract
Over the past years, there has been a significant push towards developing innovative thruster designs that can enhance the efficiency of propulsion systems. One that has gained attention is the pulse detonation engine (PDE). This type of internal combustion engine uses detona- tion waves to generate thrust, offering potential advantages in terms of higher efficiency and greater power density. PDEs have the potential to significantly impact both aeronautics and space applications. In aeronautics, PDEs could offer significant advantages in terms of re- ducing fuel consumption, increasing range and speed, and decreasing emissions, particularly for military applications. In space applications, PDEs could enable more efficient and faster space travel and in-orbit maneuver. The analysis of the PDE concept in this work involves exploring variations in both geometri- cal design and operating conditions to understand their impact on the engine’s performance. Single cycle CFD simulations are utilized to investigate changes in performance under dif- ferent conditions. The DDTFoam solver, available on OpenFOAM 2.1, is used to simulate the detonation phe- nomenon. It’s a density-based solver that resolves the unsteady, compressible Navier-Stokes equations, using the HLLC scheme with multidimensional slope delimiters to determine con- vective fluxes. For modeling the reactive flow field of premixed hydrogen-air mixture, the solver uses the URANS second-order approximate Riemann solver and the O’ Coinare reac- tion scheme to model the reaction mechanism. The deflagrative part of the solver, based on the PISO algorithm, is modeled by the Weller combustion model, while the detonative part is based on the auto-ignition delay time. This study conducted a parametric investigation of different nozzle configurations, a di- verging conical nozzle and a parabolic nozzle, to evaluate the evolution of the flow field and propulsive performance using single-pulse finite time computations. The results indicate that the presence of a nozzle may improve PDE performances by increasing thrust delivery during the burning and blow-down phases. Furthermore, the study suggested that filling the entire nozzle domain with the detonable mixture may have negative effects on PDE performance. The investigation also analyzed low external ambient pressure conditions, demonstrating an increase in performance under such circumstances. Finally, to ensure the accuracy and reliability of the results obtained from the parametric investigation, a 3D simulation was conducted to validate the computational model used.File | Dimensione | Formato | |
---|---|---|---|
SommaUmberto_MasterThesis.pdf
solo utenti autorizzati a partire dal 09/04/2026
Descrizione: Numerical investigation and propulsive performance evaluation of pulse detonation thruster
Dimensione
16.76 MB
Formato
Adobe PDF
|
16.76 MB | Adobe PDF | Visualizza/Apri |
SommaUmberto_ExecutiveSummary.pdf
solo utenti autorizzati a partire dal 09/04/2026
Descrizione: Numerical investigation and propulsive performance evaluation of pulse detonation thruster
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/202876