The present thesis presents a finite-difference Direct Numerical Sim- ulation (DNS) code designed to assess the turbulent drag reduction produced by riblets of arbitrary shape. The code’s strength lies in its efficiency, achieved through the implementation of an immersed boundary method that incorporates a corner correction for the riblets’ edges. The idea hinges on the observation that, near geo- metrical singularities, convection terms are negligible: the analytical steady Stokes solution is used to correct the immersed boundary terms. As a result, extremely fine grids are not required to properly resolve the riblet tip. The computationally efficient code enabled a comprehensive parametric study, in which longitudinally straight and sinusoidal triangular riblets with a 60-degree tip angle were tested for a wide range of riblet sizes to measure the drag reduction curve. The corner correction was found to be crucial in properly computing both the laminar and tur- bulent solutions. Results are presented in terms of the friction coefficient and shift in the mean velocity profile. Additionally, results for turbulence statistics such as Reynolds stresses, mean velocity profiles, and Quasi-Streamwise-Vortices position and intensity are also provided. The study focuses particularly on the advantages that sinusoidal riblets provide in comparison to their straight counterparts.
Nella presente tesi viene presentato un codice di simulazione numerica diretta (DNS) a differenze finite progettato per valutare la riduzione della resistenza di attrito turbolento generata da riblets di forma arbitraria. Il punto di forza del codice risiede nella sua efficienza, ottenuta mediante l’implementazione di un metodo ai contorni immersi che incorpora una correzione dello spigolo per le punte delle riblets. L’idea si basa sull’osservazione che, nei pressi delle singolarità geometriche, i termini convettivi sono trascurabili: la soluzione stazionaria analitica del problema di Stokes viene utilizzata per correggere i termini Immersed Boundary. Di conseguenza, non sono necessarie mesh estremamente fini per risolvere correttamente la punta delle riblets. L’efficienza computazionale del codice ha permesso un’analisi parametrica della geometria delle riblets, in particolare sono state testate riblets triangolari con angolo di 60 gradi dirette in direzione del flusso medio per un’ampia gamma di dimensioni delle riblets al fine di misurare la curva di drag reduction. La Corner Correction è risultata cruciale per la corretta simulazione di correnti laminari e turbolente. I risultati sono illustrati in termini di coefficiente di attrito e shift del profilo di velocità medio. Vengono inoltre presentate alcune statistiche della turbolenza, come gli sforzi di Reynolds, i profili di velocità media e la posizione e intensità dei Quasi-Stramwise-Vortices. Un focus particolare viene rivolto all’efficienza delle riblets sinusoidali rispetto alla configuarazione rettilinea.
Efficient Direct Numerical Simulations of Straight and Sinusoidal Riblets in Turbulent Channel Flows
CIPELLI, STEFANO
2021/2022
Abstract
The present thesis presents a finite-difference Direct Numerical Sim- ulation (DNS) code designed to assess the turbulent drag reduction produced by riblets of arbitrary shape. The code’s strength lies in its efficiency, achieved through the implementation of an immersed boundary method that incorporates a corner correction for the riblets’ edges. The idea hinges on the observation that, near geo- metrical singularities, convection terms are negligible: the analytical steady Stokes solution is used to correct the immersed boundary terms. As a result, extremely fine grids are not required to properly resolve the riblet tip. The computationally efficient code enabled a comprehensive parametric study, in which longitudinally straight and sinusoidal triangular riblets with a 60-degree tip angle were tested for a wide range of riblet sizes to measure the drag reduction curve. The corner correction was found to be crucial in properly computing both the laminar and tur- bulent solutions. Results are presented in terms of the friction coefficient and shift in the mean velocity profile. Additionally, results for turbulence statistics such as Reynolds stresses, mean velocity profiles, and Quasi-Streamwise-Vortices position and intensity are also provided. The study focuses particularly on the advantages that sinusoidal riblets provide in comparison to their straight counterparts.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
472.46 kB
Formato
Adobe PDF
|
472.46 kB | Adobe PDF | Visualizza/Apri |
tesi.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/203176