Bone resorption secondary to stress shielding is one of the main causes of hip implants failure. This phenomenon is due to stiffness mismatch between femur and implants, which are currently made of fully solid materials. In this work, a systematic approach for the design of a 3D printed titanium porous hip implant is proposed. The design aims at reducing stress shielding, while guaranteeing fatigue resistance. Starting from femur density distribution derived from CT images, geometrical parameters of cellular material are properly tuned to mimic bone tissue mechanical properties with the aim of minimizing bone resorption. Performances of the resulting porous design are numerically evaluated in terms of both stress shielding reduction and fatigue strength under walking gait loading conditions, also taking into account muscles forces contribution. Fatigue strength is assessed on a homogenized model in order to reduce computational effort, making the methodology easily replicable. In-depth analyses of most critical zones are conducted by means of submodels that provide the stress field on cell struts, in favor of results accuracy. The proposed porous hip implant demonstrated a bone strain distribution close to the one of an intact femur, resulting in a reduction in bone loss higher than 94% when compared to its fully solid counterpart. This was achieved thanks to a significant reduction in stiffness: solid and porous hip stems had a global stiffness of 3.33 kN/mm and 0.29 kN/mm, respectively. Considering fatigue strength, final porous stem showed a safety factor of η = 1.75 under physiological loading conditions during walking, that seems promising. This investigation demonstrates the power of tunable porous materials in stress shielding reduction, therefore proposing a potential alternative to fully solid implants. Moreover, in addition to what already reported in literature, this work provides a meticulous and easily replicable method to numerically assess fatigue resistance. This paves the way for next generation patient-specific implants in orthopaedic surgery.
Il riassorbimento osseo causato dallo stress shielding rappresenta una delle cause principali di fallimento dell’impianto di una protesi d’anca. Tale fenomeno è dovuto ad una significativa differenza in termini di rigidezza tra osso e impianto, ad oggi realizzato in titanio pieno. Questo lavoro propone un approccio sistematico per la progettazione di una protesi d’anca porosa in titanio realizzata tramite stampa 3D, con l’obiettivo di ridurre lo stress shielding e, al contempo, garantire la sua resistenza a fatica. La definizione dei parametri geometrici della struttura porosa viene fatta a partire dalla distribuzione di densità del femore ricavata da immagini CT. Ne risulta, quindi, una struttura meccanicamente equivalente al tessuto osseo, in grado di minimizzarne il riassorbimento. Le prestazioni della protesi risultante vengono valutate numericamente in termini di riduzione di stress shielding e di resistenza a fatica in una condizione di carico che simula il cammino e che tiene conto anche delle forze esercitate dai muscoli. Per rendere il metodo facilmente replicabile, riducendone il più possibile il costo computazionale, l’analisi numerica della resistenza a fatica viene condotta su un modello omogeneizzato. Le zone critiche vengono analizzate nel dettaglio mediante l’utilizzo di sottomodelli che consentono di identificare la distribuzione degli sforzi agenti sulle singole strutture porose. Grazie ad una significativa riduzione di rigidezza (3.33 kN/mm per la protesi in titanio pieno vs 0.29 kN/mm per quella porosa), il design proposto ha permesso una riduzione dello stress shielding del 94% rispetto al corrispettivo design in titanio pieno, garantita da una distribuzione dei carichi comparabile a quella fisiologica. Infine, la resistenza a fatica del design proposto è stata verificata da un coefficiente di sicurezza pari a η = 1.75. I risultati ottenuti dimostrano il potenziale delle strutture porose nel ridurre lo stress shielding, rendendole così una valida alternativa agli impianti attualmente in uso. In aggiunta a quanto riportato in letteratura, il lavoro fornisce un metodo rigoroso e facilmente replicabile per la valutazione numerica della resistenza a fatica. Questo apre la strada all’utilizzo di protesi paziente-specifiche nella chirurgia ortopedica del futuro.
A novel design of custom-made 3D printed porous hip prosthesis: numerical investigation of stress shielding reduction and fatigue assessment
Di Palma, Dalila;Maggioni, Sara
2021/2022
Abstract
Bone resorption secondary to stress shielding is one of the main causes of hip implants failure. This phenomenon is due to stiffness mismatch between femur and implants, which are currently made of fully solid materials. In this work, a systematic approach for the design of a 3D printed titanium porous hip implant is proposed. The design aims at reducing stress shielding, while guaranteeing fatigue resistance. Starting from femur density distribution derived from CT images, geometrical parameters of cellular material are properly tuned to mimic bone tissue mechanical properties with the aim of minimizing bone resorption. Performances of the resulting porous design are numerically evaluated in terms of both stress shielding reduction and fatigue strength under walking gait loading conditions, also taking into account muscles forces contribution. Fatigue strength is assessed on a homogenized model in order to reduce computational effort, making the methodology easily replicable. In-depth analyses of most critical zones are conducted by means of submodels that provide the stress field on cell struts, in favor of results accuracy. The proposed porous hip implant demonstrated a bone strain distribution close to the one of an intact femur, resulting in a reduction in bone loss higher than 94% when compared to its fully solid counterpart. This was achieved thanks to a significant reduction in stiffness: solid and porous hip stems had a global stiffness of 3.33 kN/mm and 0.29 kN/mm, respectively. Considering fatigue strength, final porous stem showed a safety factor of η = 1.75 under physiological loading conditions during walking, that seems promising. This investigation demonstrates the power of tunable porous materials in stress shielding reduction, therefore proposing a potential alternative to fully solid implants. Moreover, in addition to what already reported in literature, this work provides a meticulous and easily replicable method to numerically assess fatigue resistance. This paves the way for next generation patient-specific implants in orthopaedic surgery.File | Dimensione | Formato | |
---|---|---|---|
2023_05_DiPalma_Maggioni_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
33.66 MB
Formato
Adobe PDF
|
33.66 MB | Adobe PDF | Visualizza/Apri |
2023_05_DiPalma_Maggioni_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
4.51 MB
Formato
Adobe PDF
|
4.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/203492