The cello bridge is the part of the instrument in charge of transferring the vibrational energy of the strings into the body, and musicians, violin makers and scientists agree that it contributes greatly to the overall sound. The bridge needs to be light enough to efficiently transmit the strings’ movement yet rigid enough to support the static load of the strings. Moreover, the wood used to construct bridges is a natural material, and shows therefore high variability in its elastic properties. Historically, there have been several attempts at finding the optimal bridge design, arriving in the early 1800s at the two models predominantly used nowadays: the French and the Belgian. Recently, in Cremona, Italy, the Amorim family of luthiers has developed a new cello bridge design, that aims at a faster response and a clearer, more focused sound. To do so, they removed excessive mass and created at the same time a more direct transmission path. Inspired by their work, we study the influence of the shape of the legs of the cello bridge on its static and vibrational behavior. To do so we build a parametric CAD model of the cello bridge, where the legs can be modified, in order to go from the traditional French bridge to a bridge similar to Amorim's X Model. Then, using Finite Element Methods, we perform different types of studies including static analysis, modal analysis in different boundary conditions, and we compute the frequency response function. We also perform experimental Frequency Response Function acquisition via hammer tests on different samples of high-quality maple wood intended for the construction of cello bridges. The results show that shape can indeed be used to control the vibrational and static responses of the cello and consequently tune its sound.
Nel violoncello, così come negli altri strumenti della famiglia degli archi, il ponticello è la parte che trasmette alla cassa armonica l'energia vibrazionale delle corde, e di conseguenza è determinante per il suono di tutto lo strumento. Il ponticello deve essere sufficientemente leggero da trasmettere in modo efficace il movimento delle corde, ma allo stesso tempo deve essere rigido e resistente al loro carico statico. Inoltre il legno utilizzato per i ponticelli è un materiale naturale che mostra alta variabilità nelle sue proprietà elastiche. Nella storia degli strumenti ad arco si sono succeduti molti tipi di ponticelli diversi, fino ad arrivare, ai primi del 1800, ai due modelli oggigiorno più diffusi: il modello francese e il modello belga. Recentemente, a Cremona, in Italia, la famiglia Amorim, famiglia di liutai, ha ideato e creato un nuovo modello di ponticello per il violoncello. Lo scopo era quello di ottenere una risposta più veloce e un suono più chiaro e ben focalizzato. Prendendo ispirazione dal loro lavoro, studiamo le conseguenze della forma delle gambe del ponticello sul suo comportamento statico e vibrazionale. Per farlo, costruiamo un modello parametrico del ponticello e successivamente utilizziamo il Metodo agli Elementi Finiti per effettuare l'analisi statica, l'analisi modale e ricavare la risposta in frequenza. Inoltre, ricaviamo sperimentalmente con un martello a impatto la Funzione di Risposta in Frequenza di alcuni campioni di legno di acero di alta qualità, destinati alla costruzione di ponticelli di violoncello. I risultati mostrano che la forma del ponticello può effettivamente essere utilizzata per controllare la risposta statica e vibrazionale del violoncello e di conseguenza per modificarne il suono.
Parametric modeling and analysis of cello bridges with Finite Element Methods
Lodetti, Laura
2021/2022
Abstract
The cello bridge is the part of the instrument in charge of transferring the vibrational energy of the strings into the body, and musicians, violin makers and scientists agree that it contributes greatly to the overall sound. The bridge needs to be light enough to efficiently transmit the strings’ movement yet rigid enough to support the static load of the strings. Moreover, the wood used to construct bridges is a natural material, and shows therefore high variability in its elastic properties. Historically, there have been several attempts at finding the optimal bridge design, arriving in the early 1800s at the two models predominantly used nowadays: the French and the Belgian. Recently, in Cremona, Italy, the Amorim family of luthiers has developed a new cello bridge design, that aims at a faster response and a clearer, more focused sound. To do so, they removed excessive mass and created at the same time a more direct transmission path. Inspired by their work, we study the influence of the shape of the legs of the cello bridge on its static and vibrational behavior. To do so we build a parametric CAD model of the cello bridge, where the legs can be modified, in order to go from the traditional French bridge to a bridge similar to Amorim's X Model. Then, using Finite Element Methods, we perform different types of studies including static analysis, modal analysis in different boundary conditions, and we compute the frequency response function. We also perform experimental Frequency Response Function acquisition via hammer tests on different samples of high-quality maple wood intended for the construction of cello bridges. The results show that shape can indeed be used to control the vibrational and static responses of the cello and consequently tune its sound.File | Dimensione | Formato | |
---|---|---|---|
Laura_Lodetti___Thesis.pdf
non accessibile
Dimensione
54.78 MB
Formato
Adobe PDF
|
54.78 MB | Adobe PDF | Visualizza/Apri |
Laura_Lodetti___Executive_Summary.pdf
non accessibile
Dimensione
4.83 MB
Formato
Adobe PDF
|
4.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/204155