In this thesis, the tensile deformation and damage mechanisms of AlSi10Mg cellular architectured materials produced by Laser Powder Bed Fusion (LPBF) are studied experimentally. The investigated samples contained random distributions of through-thickness pores whose arrangement was generated numerically via random sequential absorption algorithm (RSA). In-situ tensile tests were carried out using both a uniaxial machine instrumented with optical cameras and a dedicated testing rig for tomographic experiments. The displacement fields were subsequently measured via Digital Image/Volume Correlation and the strain field patterns were studied throughout the loading history. The adopted Finite Element based techniques allowed very fine mesh dimensions to be considered, which gave precise information about strain activity. For the porous specimens, an innovative tool (called backtracking) was applied and allowed nominal meshes to be adapted to the real geometry and position of the pores, thereby giving access to accurate interpretations of their effect in the damage mechanism. The results show that deformation and damage mechanisms were governed by both process-induced defects and the pore topology. In particular, under tensile deformation, damage resulted from void coalescence and was observed to depend on the pore shape as well as on the relative distance to the nearest favorably oriented void
In questa tesi vengono studiati sperimentalmente i meccanismi di deformazione in trazione e di danneggiamento di materiali cellulari architetturati in AlSi10Mg, prodotti mediante fusione laser a letto di polvere (LPBF). I campioni studiati contengono distribuzioni aleatorie di pori passanti la cui disposizione è stata generata numericamente tramite un algoritmo di Random Sequential Absorption (RSA). Sono state eseguite prove di trazione in-situ utilizzando sia una macchina monoassiale, instrumentata con telecamere ottiche, sia un dispositivo dedicato a eseguire test all'interno di un tomografo a raggi X. I campi di spostamento sono stati successivamente ricostruiti tramite la tecnica della correlazione d'immagine e volumetrica (DIC/DVC) e i campi di deformazione sono stati calcolati e studiati durante l'intera storia di carico. La tecnologia adottata, basata sugli elementi finiti, ha permesso di arrivare a dimensioni di elementi di mesh molto ridotte, che hanno fornito informazioni precise sulla storia di deformazione. Per i campioni di materiale porosi, è stato applicato uno strumento innovativo (chiamato backtracking) che ha permesso di adattare le mesh nominali alla geometria e alla posizione reali dei pori, permettendo interpretazioni accurate del loro effetto sui meccanismi di danneggiamento. I risultati mostrano che i meccanismi di deformazione e danneggiamento sono stati governati sia dai difetti indotti dal processo produttivo, sia dalla topologia dei pori. In particolare, in caso di deformazione a trazione, il danneggiamento è derivato dalla coalescenza dei pori e si è osservato che dipende sia dalla loro forma geometrica che dalla distanza relativa tra pori orientati favorevolmente rispetto alla direzione di massimo sforzo tangenziale
In-situ study of tensile deformation and damage evolution via DIC/DVC of AlSi10Mg cellular materials produced by LPBF
SALVI, LAURA
2022/2023
Abstract
In this thesis, the tensile deformation and damage mechanisms of AlSi10Mg cellular architectured materials produced by Laser Powder Bed Fusion (LPBF) are studied experimentally. The investigated samples contained random distributions of through-thickness pores whose arrangement was generated numerically via random sequential absorption algorithm (RSA). In-situ tensile tests were carried out using both a uniaxial machine instrumented with optical cameras and a dedicated testing rig for tomographic experiments. The displacement fields were subsequently measured via Digital Image/Volume Correlation and the strain field patterns were studied throughout the loading history. The adopted Finite Element based techniques allowed very fine mesh dimensions to be considered, which gave precise information about strain activity. For the porous specimens, an innovative tool (called backtracking) was applied and allowed nominal meshes to be adapted to the real geometry and position of the pores, thereby giving access to accurate interpretations of their effect in the damage mechanism. The results show that deformation and damage mechanisms were governed by both process-induced defects and the pore topology. In particular, under tensile deformation, damage resulted from void coalescence and was observed to depend on the pore shape as well as on the relative distance to the nearest favorably oriented voidFile | Dimensione | Formato | |
---|---|---|---|
LauraSalvi_MasterThesis.pdf
non accessibile
Dimensione
18.67 MB
Formato
Adobe PDF
|
18.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/204738