Oligonucleotides (ONs) are short DNA and RNA sequences expected to revolutionize the health care. In fact, thanks to their ability to regulate the gene expression, they have the potential to treat severe and rare diseases. Despite their promise, efficient and reliable manufacturing platforms are missing, preventing the widespread availability of these lifesaving drugs. An appealing solution is the manufacturing of ONs by recombinant technologies. In fact, the marine bacterium Rhodovulum sulfidophilum has recently demonstrated its suitability as a host to produce recombinant ONs, due to its ability to secrete nucleic acids extracellularly and the absence of RNases in the culture environment. This study aims at developing a perfusion process for the continuous biomanufacturing of oligonucleotides and its integration to the chromatographic purification of the product. A bench-top scale perfusion bioreactor with a working volume of 1.5 L was operated at various inlet nutrient flow rates, or perfusion rates, to shed light on their impact on the maximum achievable viable cell density, glucose consumption, and oligonucleotide production. Furthermore, the obtained results are compared with previous scale-down experiments performed in spin tubes. A similar minimum cell-specific perfusion rate (CSPRmin) was identified in the two cases, but the bench-top system ensured a significantly higher concentration of the expressed ONs. The reverse phase chromatographic purification of the harvest collected from the bioreactor was finally investigated. The possibility of recovering the product from a broad biological mixture was demonstrated, although with a trade-off between yield and purity. Overall, this work reports a first important and stable scale-up of continuous oligonucleotides production via recombinant technology. Future work may focus on process automation and optimization of downstream, having as final target a complete and optimized end-to-end continuous manufacturing.
Gli oligonucleotidi (ON) sono brevi sequenze di DNA e RNA che si prevede rivoluzioneranno il settore sanitario. Infatti, grazie alla loro capacità di regolare l'espressione genica, essi hanno la potenzialità di curare malattie rare e gravi. Nonostante il loro potenziale, ad oggi mancano piattaforme di produzione efficienti e affidabili che consentano la diffusione di questi importanti farmaci. Una soluzione interessante è la produzione di ON tramite tecnologie ricombinanti. Infatti, il batterio marino Rhodovulum sulfidophilum ha recentemente dimostrato la sua idoneità come ospite per produrre ON ricombinanti, grazie alla sua capacità di secernere acidi nucleici all'esterno della membrana cellulare e all'assenza di RNasi nell'ambiente di coltura. Questo studio mira a sviluppare un processo a perfusione per la produzione batterica in continuo di oligonucleotidi e la sua integrazione alla purificazione cromatografica del prodotto. Nello specifico, è stato utilizzato un bioreattore a perfusione bench-scale con un volume di lavoro di 1.5 L a diverse portate di nutrienti in ingresso, o velocità di perfusione, per fare luce sul loro impatto sulla massima densità cellulare raggiungibile, consumo di glucosio e produzione di oligonucleotidi. Inoltre, i risultati ottenuti sono confrontati con precedenti esperimenti condotti in reattori da pochi millilitri. In entrambi i casi è stata identificata una velocità di perfusione specifica cellulare minima (CSPRmin) simile; tuttavia, il sistema bench-scale ha garantito una concentrazione significativamente maggiore degli ON espressi. Infine, è stata studiata l’integrazione della purificazione dell’harvest ottenuto dal reattore mediante cromatografia in fase inversa. Si è dimostrata la possibilità di recuperare il prodotto da questa miscela complessa, sebbene vincolata ad un compromesso tra resa e purezza. Nel complesso, questo lavoro riporta un primo importante e stabile scale-up di produzione continua di oligonucleotidi tramite tecnologia ricombinante. Per quanto riguarda i lavori futuri, questi potrebbero concentrarsi sull'automazione del processo e sull'ottimizzazione della purificazione, con l'obiettivo finale di ottenere una produzione end-to-end continua, completa e ottimizzata.
bench-scale perfusion production of oligonucleotides and integrated chromatographic purification
Marani, Martina
2022/2023
Abstract
Oligonucleotides (ONs) are short DNA and RNA sequences expected to revolutionize the health care. In fact, thanks to their ability to regulate the gene expression, they have the potential to treat severe and rare diseases. Despite their promise, efficient and reliable manufacturing platforms are missing, preventing the widespread availability of these lifesaving drugs. An appealing solution is the manufacturing of ONs by recombinant technologies. In fact, the marine bacterium Rhodovulum sulfidophilum has recently demonstrated its suitability as a host to produce recombinant ONs, due to its ability to secrete nucleic acids extracellularly and the absence of RNases in the culture environment. This study aims at developing a perfusion process for the continuous biomanufacturing of oligonucleotides and its integration to the chromatographic purification of the product. A bench-top scale perfusion bioreactor with a working volume of 1.5 L was operated at various inlet nutrient flow rates, or perfusion rates, to shed light on their impact on the maximum achievable viable cell density, glucose consumption, and oligonucleotide production. Furthermore, the obtained results are compared with previous scale-down experiments performed in spin tubes. A similar minimum cell-specific perfusion rate (CSPRmin) was identified in the two cases, but the bench-top system ensured a significantly higher concentration of the expressed ONs. The reverse phase chromatographic purification of the harvest collected from the bioreactor was finally investigated. The possibility of recovering the product from a broad biological mixture was demonstrated, although with a trade-off between yield and purity. Overall, this work reports a first important and stable scale-up of continuous oligonucleotides production via recombinant technology. Future work may focus on process automation and optimization of downstream, having as final target a complete and optimized end-to-end continuous manufacturing.File | Dimensione | Formato | |
---|---|---|---|
ExecutiveSummary_MartinaMarani.pdf
non accessibile
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
Thesis_MartinaMarani.pdf
non accessibile
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/206781