According to the new European Union regulations, from 2035 all the new light-duty vehicles must accomplish the zero CO2 emissions standard. In this context, internal combustion engines (ICEs) fuelled with hydrogen becomes an interesting solution. In fact, the main advantages of such powertrain (low cost, high power-to-weight ratio) can be maintained thanks to the usage of a zero-carbon impact fuel. Computational fluid dynamics (CFD) simulations represent a useful tool for supporting the industrial design of hydrogen ICEs. In particular, the analysis of the charge motion is crucial for the determination of an ICE performances, not only in terms of power and torque but also to limit and prevent the formation of pollutants. In this thesis work, the non-reacting gas-exchange process of a spark ignition ICE, characterized by a port fuel injection (PFI) of hydrogen, was investigated by means of 3D-CFD simulations. The validation of the employed methodology was carried out against measurements from a pent-roof spark-ignition research engine, studied at the CMT - University of Valencia. The simulations focused on six different operating conditions, characterized by a variation of load and air-to-fuel ratio. The analysis involved the evolution inside the cylinder of the temperature, pressure, trapped mass, tumble, heat transfer and turbulent kinetic energy. The results achieved in terms of pressure traces were in well agreement with the measured one, demonstrating the reliability of the adopted methodology. Then, all the 3D results were compared to 1D estimations, achieved by considering the complete engine schematic. Despite few discrepancies during the exhaust stage, the intake process as well as the engine dynamic effects were in very good agreement. Last, investigations were carried out on the effects produced by a higher mesh refinement near walls and a different extension of the computational domain in the exhaust line. For the first, an improvement of the heat transfer at walls was detected; for the second, the results demonstrated to be dependent to the position of the outlet patch where the boundary conditions are applied, showing the importance of a proper choice of the 3D domain open boundaries.
In accordo con le nuove leggi dell’Unione Europea, dal 2035 tutti i veicoli leggeri devono garantire lo standard di zero emissioni di CO2. In questo contesto, i motori a combustione interna alimentati ad idrogeno diventano un interessante soluzione. Infatti, i vantaggi di questa tecnologia (basso costo e basso rapporto peso/potenza) possono essere mantenuti ma con l’utilizzo di un carburante a zero emissioni di CO2. Le simulazioni CFD rappresentano un utile strumento per supportare la progettazione di motori a combustione interna ad idrogeno. In particolare, l’analisi del moto della carica è cruciale per la determinazione delle performance, non solo in termini di potenza e coppia ma anche per prevenire e limitare la formazione d’inquinanti. In questo lavoro di tesi, è stato analizzato il comportamento durante ricambio fluido in un motore ad accensione comandata con iniezione indiretta alimentato ad idrogeno, senza combustione, attraverso simulazioni CFD 3D. La validazione della metodologia utilizzata è stata eseguita confrontando i risultati con le misurazioni effettuate, su un motore sperimentale ad accensione comandata con testa di tipo pent-roof, dall' istituto CMT dell’università di Valencia. Le simulazioni si sono focalizzate su sei differenti punti operativi, caratterizzati da variazioni di carico e rapporto aria combustibile. L’analisi coinvolge l’evoluzione della temperatura, pressione, massa intrappolata, tumble, scambio termico ed energia cinetica turbolenta all’interno del cilindro. I risultati raggiunti in termini d’evoluzione della pressione sono in accordo con quelli misurati, dimostrando l’affidabilità della metodologia. Successivamente è stato effetuato un confronto tra i risultati 3D e 1D, ottenuti considerando la completa geometria del motore. A meno di alcune discrepanze durante la fase di scarico, l’aspirazione, così come, gli effetti dinamici del motore sono consistenti. Infine, le indagini sono state eseguite sugli effetti prodotti da un maggior raffinamento a parete ed una differente lunghezza del condotto di scarico. Per la prima, è stato notato un miglioramento nello scambio termico; per la seconda, si è notato una variazione dei risultati con la differente posizione della sezione d’uscita, mostrando l’importanza nella scelta delle sezioni aperte all’interno del dominio 3D.
cfd modeling and validation of the gas exchange process in a hydrogen pfi engine
LIBERA, FEDERICO
2022/2023
Abstract
According to the new European Union regulations, from 2035 all the new light-duty vehicles must accomplish the zero CO2 emissions standard. In this context, internal combustion engines (ICEs) fuelled with hydrogen becomes an interesting solution. In fact, the main advantages of such powertrain (low cost, high power-to-weight ratio) can be maintained thanks to the usage of a zero-carbon impact fuel. Computational fluid dynamics (CFD) simulations represent a useful tool for supporting the industrial design of hydrogen ICEs. In particular, the analysis of the charge motion is crucial for the determination of an ICE performances, not only in terms of power and torque but also to limit and prevent the formation of pollutants. In this thesis work, the non-reacting gas-exchange process of a spark ignition ICE, characterized by a port fuel injection (PFI) of hydrogen, was investigated by means of 3D-CFD simulations. The validation of the employed methodology was carried out against measurements from a pent-roof spark-ignition research engine, studied at the CMT - University of Valencia. The simulations focused on six different operating conditions, characterized by a variation of load and air-to-fuel ratio. The analysis involved the evolution inside the cylinder of the temperature, pressure, trapped mass, tumble, heat transfer and turbulent kinetic energy. The results achieved in terms of pressure traces were in well agreement with the measured one, demonstrating the reliability of the adopted methodology. Then, all the 3D results were compared to 1D estimations, achieved by considering the complete engine schematic. Despite few discrepancies during the exhaust stage, the intake process as well as the engine dynamic effects were in very good agreement. Last, investigations were carried out on the effects produced by a higher mesh refinement near walls and a different extension of the computational domain in the exhaust line. For the first, an improvement of the heat transfer at walls was detected; for the second, the results demonstrated to be dependent to the position of the outlet patch where the boundary conditions are applied, showing the importance of a proper choice of the 3D domain open boundaries.File | Dimensione | Formato | |
---|---|---|---|
2023_7_Libera_Federico_02.pdf
solo utenti autorizzati dal 04/07/2024
Descrizione: Executive summary
Dimensione
9.17 MB
Formato
Adobe PDF
|
9.17 MB | Adobe PDF | Visualizza/Apri |
2023_7_Libera_Federico_01.pdf
solo utenti autorizzati dal 04/07/2024
Descrizione: Tesi
Dimensione
195.38 MB
Formato
Adobe PDF
|
195.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/206993