Throughout the PhD research, the Twin Background Subtraction (TBS) technique evolved from a theoretical concept into a validated, innovative, non-intrusive wide field of view measurement method. This method enables investigations into the behaviour of thin liquid films. Unlike techniques that were available in the literature, the developed method can simultaneously measure the thickness and the mean temperature of the liquid film. The primary focus of the research was the experimental aspect, as numerous challenges were encountered in obtaining precise measurements and designing the experimental setup to enhance the technique's reliability and accuracy. The TBS technique has demonstrated its value as a tool for investigating various thermofluidic problems, including condensation, confined flows in channels, and flow boiling. This innovative method uses infrared images from a middle wave infrared camera, providing a broader field of view compared to many localized techniques. Three different test campaigns were conducted: • Fine-tuning of the TBS technique with a thin layer of confined water in a wedge-shaped configuration. • Laboratory testing of the technique applied to a section of a pulsating heat pipe with ethanol and a 50% filling ratio. • Parabolic flight tests of the technique applied to the same section of the pulsating heat pipe. From the first test campaign, the TBS technique's applicability across an extensive range of film thicknesses was demonstrated through theoretical analysis and experimental results. For water films, the uncertainty in thickness measurements was less than 5% for thicknesses between 50 and 350 µm, suggesting wider applicability than the one in the theoretical uncertainty estimation, where the applicability range was calculated to be 15µm-160µm. Qualitative results were also valid for microfilms as thin as 10 µm in which the relative error was high, but the film qualitative trend was valid. However, thinner films led to substantial errors and unrealistic measurements. Temperature measurement accuracy decreased with increasing film thickness, and like thickness measurements, the uncertainty became infinite as the film thickness approached zero. The error also depended on the film temperature and the temperature difference between the two backgrounds. The film temperature is optimal when lies in between the temperatures of the two emitting backgrounds behind the film. A larger temperature difference between them results in increased attenuated signals difference enhancing the technique's accuracy. The TBS technique was successfully applied to a top-heated counter gravity Pulsating Heat Pipe (PHP) in the second and third experimental campaign for dynamic film thickness and temperature measurements. The technique's accuracy was improved through multipoint calibration, accounting for film temperature and thickness effects. The application of the TBS to the PHP included simultaneous acquisition of the direct and mirror reflected IR images. From the results of these two latter campaigns the working limits were 20-350µm thickness with ethanol as the working fluid. Statistical analysis in the range between 0-350 µm revealed that temperature and thickness were linearly dependent on thermal power above 105W, with a more stable thermal response. Lower power levels caused the device to deactivate under normal or hyper gravity. In ground laboratory tests, the mean temperature ranged from 31°C (30W) to 44°C (150W) and thickness from 42µm (30W) to 95µm (150W). During the parabolic flight campaign, the mean temperature ranged from 27°C (30W) to 42°C (180W) and thickness from 55µm (25W) to 120µm (180W). These results emphasize the technique's potential for studying different thermofluidic problems while considering film temperature and thickness effects. The TBS technique has the potential to offer significant advancements in the field of thermofluidic research, providing a practical experimental approach for studying complex phenomena such as condensation, confined flows in channels, and flow boiling. The wide field of view, applicability, reliability, and accuracy of the technique make it a promising tool for future research and development in this area.
Durante la ricerca di dottorato, la tecnica Twin Background Subtraction (TBS) si è evoluta da un'idea teorica a un metodo di misurazione non intrusivo ad ampio campo di misura innovativo e validato, permettendo di indagare il comportamento dei film liquidi sottili. La tecnica sviluppata è in grado di misurare simultaneamente lo spessore e la temperatura media del film liquido, a differenza delle tecniche disponibili in letteratura. L'obiettivo principale della ricerca è stato l'aspetto sperimentale, affrontando sfide legate all'ottenimento di misure precise e alla progettazione del setup sperimentale per migliorare l'affidabilità e l'accuratezza della tecnica. La tecnica TBS ha dimostrato il suo valore nello studio di vari problemi termofluidici, tra cui condensazione, flussi confinati in canali e flow boiling. Il metodo TBS utilizza immagini infrarosse di una telecamera MWIR, offrendo un campo visivo più ampio rispetto a molte tecniche localizzate. Sono state condotte tre campagne sperimentali: • messa a punto della tecnica TBS con uno strato sottile di acqua confinata in una configurazione a cuneo; • test in laboratorio della tecnica applicata a una sezione di pulsating heat pipe con etanolo e un rapporto di riempimento del 50%; • test di volo parabolico della tecnica applicata alla stessa sezione della pulsating heat pipe. Con la prima campagna sperimentale, l'applicabilità della tecnica TBS su un'ampia gamma di spessori di film è stata dimostrata attraverso analisi teoriche e s sperimentali. Per i film sottili d'acqua, l'incertezza nelle misure di spessore è risultata inferiore al 5% per spessori compresi tra 50 e 350 µm, suggerendo un'applicabilità più ampia di quella ipotizzata nella stima teorica dell'incertezza, dove l'intervallo di applicabilità è stato calcolato tra 15µm-160µm. I risultati qualitativi sono validi anche per microfilm sottili fino a 10 µm. Tuttavia, film più sottili comportano errori sostanziali e misure non realistiche. L'accuratezza delle misure di temperatura diminuisce con l'aumento dello spessore del film, e come per le misure di spessore, l'incertezza diventa infinita quando lo spessore del film si avvicina a zero. L'errore dipende anche dalla temperatura del film e dalla differenza di temperatura tra i due sfondi. La temperatura del film è ottimale quando compresa tra le temperature dei due sfondi emittenti dietro il film liquido. Una maggiore differenza di temperatura tra di essi determina un aumento della differenza di segnali attenuati, migliorando l'accuratezza della tecnica. Nei test di laboratorio a terra, la temperatura media variava da 31°C (30W) a 44°C (150W) e lo spessore da 42µm (30W) a 95µm (150W). Durante la campagna di volo parabolico, la temperatura media variava da 27°C (30W) a 42°C (180W) e lo spessore da 55µm (25W) a 120µm (180W). Questi risultati sottolineano il potenziale della tecnica per lo studio di diversi problemi termofluidici, considerando gli effetti della temperatura e dello spessore del film. La tecnica TBS è stata applicata con successo a una pulsating heat pipe riscaldata dall'alto e in contro gravità nella seconda e terza campagna sperimentale per misurazioni dinamiche di spessore e temperatura del film. L'accuratezza della tecnica è stata migliorata attraverso una calibrazione multipunto, tenendo conto degli effetti della temperatura e dello spessore del film. L'applicazione del TBS alla pulsating heat pipe prevedeva l'acquisizione simultanea delle immagini IR dirette e riflesse dallo specchio. Dai risultati di queste ultime due campagne, i limiti di lavoro erano uno spessore tra 20 e 350 µm con etanolo come fluido di lavoro. L'analisi statistica ha rivelato che la temperatura e lo spessore erano linearmente dipendenti dalla potenza termica al di sopra dei 105W, con una risposta termica più stabile. Livelli di potenza inferiori causavano la disattivazione del dispositivo in condizioni di normale o iper-gravità. Nei test di laboratorio a terra, la temperatura media variava da 31°C (30W) a 44°C (150W) e lo spessore da 42µm (30W) a 95µm (150W). Durante la campagna di volo parabolico, la temperatura media variava da 27°C (30W) a 42°C (180W) e lo spessore da 55µm (25W) a 120µm (180W). Questi risultati sottolineano il potenziale della tecnica di misura qui sviluppata per lo studio di diversi problemi termofluidici, che esaminano gli effetti della temperatura e dello spessore del film. La tecnica TBS ha il potenziale di offrire progressi significativi nel campo della ricerca termofluidica, fornendo un approccio sperimentale pratico per lo studio di fenomeni complessi come la condensazione, i flussi confinati nei canali e il flow boiling. L'ampio campo visivo, l'applicabilità, l'affidabilità e l'accuratezza della tecnica la rendono uno strumento promettente per la ricerca e lo sviluppo futuri in questo settore.
A new thermographic technique applied to advanced two-phase heat transfer devices
CLAVENNA, RICCARDO
2022/2023
Abstract
Throughout the PhD research, the Twin Background Subtraction (TBS) technique evolved from a theoretical concept into a validated, innovative, non-intrusive wide field of view measurement method. This method enables investigations into the behaviour of thin liquid films. Unlike techniques that were available in the literature, the developed method can simultaneously measure the thickness and the mean temperature of the liquid film. The primary focus of the research was the experimental aspect, as numerous challenges were encountered in obtaining precise measurements and designing the experimental setup to enhance the technique's reliability and accuracy. The TBS technique has demonstrated its value as a tool for investigating various thermofluidic problems, including condensation, confined flows in channels, and flow boiling. This innovative method uses infrared images from a middle wave infrared camera, providing a broader field of view compared to many localized techniques. Three different test campaigns were conducted: • Fine-tuning of the TBS technique with a thin layer of confined water in a wedge-shaped configuration. • Laboratory testing of the technique applied to a section of a pulsating heat pipe with ethanol and a 50% filling ratio. • Parabolic flight tests of the technique applied to the same section of the pulsating heat pipe. From the first test campaign, the TBS technique's applicability across an extensive range of film thicknesses was demonstrated through theoretical analysis and experimental results. For water films, the uncertainty in thickness measurements was less than 5% for thicknesses between 50 and 350 µm, suggesting wider applicability than the one in the theoretical uncertainty estimation, where the applicability range was calculated to be 15µm-160µm. Qualitative results were also valid for microfilms as thin as 10 µm in which the relative error was high, but the film qualitative trend was valid. However, thinner films led to substantial errors and unrealistic measurements. Temperature measurement accuracy decreased with increasing film thickness, and like thickness measurements, the uncertainty became infinite as the film thickness approached zero. The error also depended on the film temperature and the temperature difference between the two backgrounds. The film temperature is optimal when lies in between the temperatures of the two emitting backgrounds behind the film. A larger temperature difference between them results in increased attenuated signals difference enhancing the technique's accuracy. The TBS technique was successfully applied to a top-heated counter gravity Pulsating Heat Pipe (PHP) in the second and third experimental campaign for dynamic film thickness and temperature measurements. The technique's accuracy was improved through multipoint calibration, accounting for film temperature and thickness effects. The application of the TBS to the PHP included simultaneous acquisition of the direct and mirror reflected IR images. From the results of these two latter campaigns the working limits were 20-350µm thickness with ethanol as the working fluid. Statistical analysis in the range between 0-350 µm revealed that temperature and thickness were linearly dependent on thermal power above 105W, with a more stable thermal response. Lower power levels caused the device to deactivate under normal or hyper gravity. In ground laboratory tests, the mean temperature ranged from 31°C (30W) to 44°C (150W) and thickness from 42µm (30W) to 95µm (150W). During the parabolic flight campaign, the mean temperature ranged from 27°C (30W) to 42°C (180W) and thickness from 55µm (25W) to 120µm (180W). These results emphasize the technique's potential for studying different thermofluidic problems while considering film temperature and thickness effects. The TBS technique has the potential to offer significant advancements in the field of thermofluidic research, providing a practical experimental approach for studying complex phenomena such as condensation, confined flows in channels, and flow boiling. The wide field of view, applicability, reliability, and accuracy of the technique make it a promising tool for future research and development in this area.File | Dimensione | Formato | |
---|---|---|---|
ClavennaRiccardo_PhDThesis_v2.6.pdf
accessibile in internet per tutti
Dimensione
13.78 MB
Formato
Adobe PDF
|
13.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/207602