The aim of the PhD work discussed in this Thesis is the experimental study of the dynamic and structural properties of two fundamental types of Soft Solids: 2D Colloidal Crystals and Polymer Physical Gels. Besides the interest in studying their physical properties, often not fully understood, these materials are useful in several fields ranging from photonics to biological applications such as cell culture and the design of biocompatible substrates. The research was conducted using various optical techniques: microscopy, “standard” light scattering techniques and more recent experimental methods that combine microscopy and scattering, such as Photon Correlation Imaging, which allows for discrimination of the temporal correlation of the scattered intensity from different regions of an image of the scattering volume. Among the techniques used in my doctoral work, the optothermal stimulation method is certainly noteworthy, in which a partially absorbing laser beam – in the infrared range in the case of aqueous solvents – impinges on the sample, locally heating it. In this way, it is possible to study the thermophysical properties of dispersed and arrested systems exploiting a self-effect on laser propagation known as Thermal Lensing, as well as to apply thermal stresses of easily variable intensity to Soft Solids, whose microscopic properties can then be assessed with scattering techniques. This strategy has also been employed to concentrate colloidal suspensions of particles confined along the vertical direction, which move in a temperature gradient due to thermophoresis. By using thermophilic particles (which move toward regions of higher temperature), we studied the 2D crystallization of a system of hard spheres. The nucleation process of the aggregate, its ordering, and the growth kinetics of the formed crystal were investigated using optical microscopy methods, varying the applied temperature gradient, accurately measured using a temperature-sensitive fluorescent probe. As for polymer physical gels, a first part of my doctoral work focused on biological hydrogels, whose constituent blocks are peptide chains. In particular, the gelation kinetics in solutions of amyloid fibrils of β-lactoglobulin was studied, induced by the perfusion of a saline solution through an osmotic membrane. We observed that the propagation velocity of the gelation front and the microscopic dynamics of the arrested phase depend on the final ionic strength of the system, which determines how the stresses accumulated during gel formation relax over time. The second investigated protein gel system consists of solutions of self assembling peptides, which aggregate in a basic environment through hydrophobic interactions. In this study, we determined the aggregation kinetics of peptides in solution and the consequent gel formation by utilizing the urea hydrolysis reaction controlled by urease, which allows for gelation times slow enough to follow the aggregation process and at the same time produce structurally and dynamically uniform gels. Within the framework of the study of physical gels, thermoresponsive systems have played a particular importance in my Thesis work. In this context, we studied the viscoelastic properties of polymer solutions and Mebiol® gels, a widely used thermoreversible system for cell cultures, using passive microrheology. While Mebiol® exhibits Newtonian behavior in the dilute regime, at higher concentrations, the viscoelastic moduli show a non-monotonic trend with temperature, consistent with a model that predicts an increase in the interaction force between chains and simultaneous compaction of the aggregates. Furthermore, the heating rate significantly influences the phase diagram of the polymer solution: it is possible to form a hard gel by rapidly heating a “low concentration” sample that would remain fluid when heated slowly to the same temperature. Mebiol® was also studied using the previously mentioned Thermal Lensing method to observe the temperature dependence of the thermal expansivity of the system in both the fluid and gel phases. These measurements were also carried out on other thermoresponsive systems, studying the Volume Phase Transition in PniPAM microgels and the micellization in poloxamer solutions, which share a common physical origin related to the dehydration of the polymer chains. The technique of optothermal excitation using an infrared laser was finally combined with the Photon Correlation Imaging apparatus to perform preliminary measurements on the microscopic dynamics of a physical gel subjected to local thermal stress.
Obiettivo del lavoro di dottorato discusso in questa tesi è lo studio sperimentale delle proprietà dinamiche e strutturali di due tipi fondamentali di Solidi Soffici: i cristalli colloidali 2D ed i gel fisici polimerici. Oltre all’interesse per lo studio delle loro proprietà fisiche, spesso non ancora del tutto comprese, questi materiali sono utili per il loro impiego in ambiti che vanno dalla fotonica, alle applicazioni biologiche come la coltura cellulare e il design di substrati biocompatibili. L’attività è stata svolta impiegando diverse tecniche ottiche, come la microscopia, le tecniche “standard” di scattering di luce, o metodi sperimentali più recenti che combinano opportunamente microscopia e scattering come la Photon Correlation Imaging, che permette di discriminare la correlazione temporale dell’intensità di luce diffusa da regioni differenti di un’immagine del campione. Tra i metodi utilizzati nel mio lavoro di dottorato, è sicuramente degno di nota quello della stimolazione optotermica, in cui un fascio laser parzialmente assorbente, nel range infrarosso nel caso di solventi acquosi, incide sul campione scaldandolo localmente. In questo modo, è possibile sia studiare le proprietà termofisiche di sistemi dispersi ed arrestati sfruttando un effetto noto come Thermal Lensing, sia applicare stress termici di intensità facilmente variabile a Solidi Soffici, le cui proprietà microscopiche potranno poi essere ottenute con tecniche di scattering. Questa strategia è stata sfruttata anche per concentrare delle sospensioni colloidali di particelle confinate lungo la verticale, che si muovono in un gradiente di temperatura a causa della termoforesi. In questo modo, impiegando particelle termofiliche (che si muovono cioè verso le regioni a temperatura maggiore) abbiamo potuto studiare la cristallizzazione in 2D di un sistema di sfere rigide. Il processo di nucleazione dell’aggregato, il suo ordinamento e la cinetica di crescita del cristallo formatosi sono stati investigati con metodi di microscopia ottica, variando il gradiente di temperatura applicato, accuratamente misurato mediante una sonda fluorescente sensibile alla temperatura. Per quanto concerne i gel fisici polimerici, una prima parte del mio dottorato ha riguardato idrogel biologici, i cui blocchi costituenti sono catene peptidiche. In particolare, è stata studiata la cinetica di gelazione in soluzioni di fibre amiloidi di β-lattoglobulina, indotta dalla perfusione di una soluzione salina attraverso una membrana osmotica. Abbiamo osservato che la velocità di propagazione del fronte di gelazione e la dinamica microscopica della fase arrestata dipendono dalla forza ionica finale del sistema, che determina il modo in cui gli stress accumulati durante la formazione del gel rilassano nel tempo. Il secondo sistema di gel di proteine investigato è costituito da soluzioni di self assembling peptides, che aggregano in ambiente basico mediante interazioni idrofobiche. In questo studio, abbiamo determinato la cinetica di aggregazione dei peptidi in soluzione e la conseguente formazione del gel sfruttando la reazione di idrolisi dell’urea controllata dall’urease, che permette di ottenere dei tempi di gelazione sufficientemente lenti tali da poter seguire il processo di aggregazione ed al contempo produrre dei gel strutturalmente e dinamicamente uniformi. Nel quadro dello studio dei gel fisici, i sistemi termoresponsivi hanno rivestito una particolare importanza per il mio lavoro di tesi. In tale ambito, abbiamo studiato le proprietà viscoelastiche di soluzioni polimeriche e gel di Mebiol®, un sistema termoreversibile largamente utilizzato per colture cellulari, mediante microreologia passiva. Mentre nel regime diluito il Mebiol® ha un comportamento Newtoniano, a concentrazione maggiore i moduli viscoelastici mostrano un andamento non monotono con la temperatura, coerentemente con un modello che prevede l’aumento della forza d’interazione tra le catene e una simultanea compattazione delle stesse. Inoltre, la velocità di riscaldamento influenza notevolmente il diagramma di fase della soluzione polimerica: infatti è possibile formare un gel duro scaldando velocemente un campione a “bassa concentrazione” che invece portato lentamente alla stessa temperatura rimarrebbe fluido. Il Mebiol® è stato poi studiato anche attraverso il metodo di Thermal Lensing, precedentemente menzionato, per osservare la dipendenza dalla temperatura dell’espansività termica del sistema sia in fase fluida che in fase gel. Queste misure sono state effettuate anche su altri sistemi termoresponsivi, per lo studio della Volume Phase Transition in microgel di PniPAM e la micellizzazione in soluzioni di polaxameri, che mostrano un’origine fisica comune legata alla disidratazione delle catene polimeriche. La tecnica di eccitazione optotermica mediante un laser infrarosso è stata infine combinata all’apparato di Photon Correlation Imaging, per poter effettuare misure preliminari sulla dinamica microscopica di un gel fisico soggetto ad uno stress termico locale.
Optical investigation of non-equilibrium properties of soft solids
RUZZI, VINCENZO
2022/2023
Abstract
The aim of the PhD work discussed in this Thesis is the experimental study of the dynamic and structural properties of two fundamental types of Soft Solids: 2D Colloidal Crystals and Polymer Physical Gels. Besides the interest in studying their physical properties, often not fully understood, these materials are useful in several fields ranging from photonics to biological applications such as cell culture and the design of biocompatible substrates. The research was conducted using various optical techniques: microscopy, “standard” light scattering techniques and more recent experimental methods that combine microscopy and scattering, such as Photon Correlation Imaging, which allows for discrimination of the temporal correlation of the scattered intensity from different regions of an image of the scattering volume. Among the techniques used in my doctoral work, the optothermal stimulation method is certainly noteworthy, in which a partially absorbing laser beam – in the infrared range in the case of aqueous solvents – impinges on the sample, locally heating it. In this way, it is possible to study the thermophysical properties of dispersed and arrested systems exploiting a self-effect on laser propagation known as Thermal Lensing, as well as to apply thermal stresses of easily variable intensity to Soft Solids, whose microscopic properties can then be assessed with scattering techniques. This strategy has also been employed to concentrate colloidal suspensions of particles confined along the vertical direction, which move in a temperature gradient due to thermophoresis. By using thermophilic particles (which move toward regions of higher temperature), we studied the 2D crystallization of a system of hard spheres. The nucleation process of the aggregate, its ordering, and the growth kinetics of the formed crystal were investigated using optical microscopy methods, varying the applied temperature gradient, accurately measured using a temperature-sensitive fluorescent probe. As for polymer physical gels, a first part of my doctoral work focused on biological hydrogels, whose constituent blocks are peptide chains. In particular, the gelation kinetics in solutions of amyloid fibrils of β-lactoglobulin was studied, induced by the perfusion of a saline solution through an osmotic membrane. We observed that the propagation velocity of the gelation front and the microscopic dynamics of the arrested phase depend on the final ionic strength of the system, which determines how the stresses accumulated during gel formation relax over time. The second investigated protein gel system consists of solutions of self assembling peptides, which aggregate in a basic environment through hydrophobic interactions. In this study, we determined the aggregation kinetics of peptides in solution and the consequent gel formation by utilizing the urea hydrolysis reaction controlled by urease, which allows for gelation times slow enough to follow the aggregation process and at the same time produce structurally and dynamically uniform gels. Within the framework of the study of physical gels, thermoresponsive systems have played a particular importance in my Thesis work. In this context, we studied the viscoelastic properties of polymer solutions and Mebiol® gels, a widely used thermoreversible system for cell cultures, using passive microrheology. While Mebiol® exhibits Newtonian behavior in the dilute regime, at higher concentrations, the viscoelastic moduli show a non-monotonic trend with temperature, consistent with a model that predicts an increase in the interaction force between chains and simultaneous compaction of the aggregates. Furthermore, the heating rate significantly influences the phase diagram of the polymer solution: it is possible to form a hard gel by rapidly heating a “low concentration” sample that would remain fluid when heated slowly to the same temperature. Mebiol® was also studied using the previously mentioned Thermal Lensing method to observe the temperature dependence of the thermal expansivity of the system in both the fluid and gel phases. These measurements were also carried out on other thermoresponsive systems, studying the Volume Phase Transition in PniPAM microgels and the micellization in poloxamer solutions, which share a common physical origin related to the dehydration of the polymer chains. The technique of optothermal excitation using an infrared laser was finally combined with the Photon Correlation Imaging apparatus to perform preliminary measurements on the microscopic dynamics of a physical gel subjected to local thermal stress.File | Dimensione | Formato | |
---|---|---|---|
PHD_THESIS_Ruzzi.pdf
non accessibile
Dimensione
25.62 MB
Formato
Adobe PDF
|
25.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/207606