Continuous-flow manufacturing is an innovative approach that involves conducting reactions in a continuously flowing stream, using microreactors or microfabricated systems instead of traditional batch reactors. Here, reactants are continuously pumped into the microreactor, where they mix and react, and the product is continuously collected. This technology is radically changing the way to approach pharmaceutical and industrial organic chemistry. On one hand, the optimal performance of these kind of reactors paves the way for new possibilities from a chemical viewpoint (i.e., reactions that were not even considered as possible become now feasible); on the other hand, there is an indissoluble bond between this new technology and current themes related to process sustainability and circularity. In fact, flow processing improves mass and heat transfer and enhances mixing conditions, resulting in an increased reaction yield and productivity, with lower waste generation and cost consumption. From a closer look at the scientific literature, it is possible to appreciate that in the past decades most continuous-flow methods have been developed for reactions in the liquid phase, often using homogeneous catalysts. Taking the steps from the gram-scale multistep synthesis of small molecules under flow conditions, the aim of this PhD thesis was to expand this technology further, developing the full potential of microreactor engineering in new and unprecedented directions. In this context, this research has integrated multiple reaction steps for the synthesis of small molecules (i.e., azetidines, glycidyl derivatives, and trifluoromethylated pyrroles). Moreover, given the need to develop greener continuous methods that replace century-old, toxic, and expensive homogeneous catalysts, the thesis has also paid attention to the design of superior continuous-flow methods exploiting heterogeneous photocatalysts. In particular, we have studied the use of carbon nitride-based photocatalyst for organic transformations, focusing on the effect of catalyst nanostructuring on the reaction progress. These innovative heterogeneous catalysts are prepared from low-cost precursors, and have visible-light absorbing capabilities, excellent photostability, and tunable surface area. The main limitation of traditional photocatalytic reactions is often the scale-up, mainly due to the less efficient light transmission in large batch reactors and the requirement of considerable amount of expensive metal-based photocatalysts. To bypass this challenge, we have investigated the design of novel polymeric photoreactor, functionalized with carbon nitride nanocatalyst ensures a uniform light distribution inside the reactor and ease process scale up. All chemical reactions often require a purification step, which is often conducted using batch vessels. For this reason, the final purpose of this PhD thesis was to develop a flexible protocol for the in-line integration of flow synthesis and flow purification for applications in the end-to-end preparation of pharmaceutically-relevant small molecules. The goal was achieved using continuous countercurrent chromatography simulating a “moving bed”, involving the combination of sequential microreactors and twin-column system. The column loading method ensures that the product breaking through a fully loaded first column is loaded onto the second one, avoiding waste of precious material and technological complexity associated with the use of four-to-six columns typical of simulated moving bed chromatography. Compared to the discontinuous and other traditional approaches, our method leads to higher isolated yields (ca. +60%), higher productivity (ca. +30%), and reduced solvent consumption (ca. −80%). A circularity and life-cycle analysis (LCA) was also conducted to demonstrate the environmental benefits of the flow process. Overall, the protocol led to easier scalability and better suitability for industrial applications, providing an additional tool for the design of sustainable manufacturing processes.
La “chimica in flusso” è un approccio innovativo in cui le reazioni vengono condotte in un flusso continuo, utilizzando microreattori o sistemi in scala ridotta invece dei tradizionali reattori batch. Qui, i reagenti vengono pompati in modo continuo nel microreattore, dove si mescolano e reagiscono, e il prodotto viene raccolto in modo costante. Questa tecnologia sta cambiando radicalmente il modo di affrontare la sintesi farmaceutica e industriale. Da un lato, le prestazioni ottimali di questo tipo di reattori aprono nuove possibilità da un punto di vista chimico (ad esempio, reazioni che prima erano considerate impossibili diventano ora fattibili); dall'altro lato, c'è un legame indissolubile tra questa nuova tecnologia e i temi attuali legati alla sostenibilità e alla circolarità dei processi. Infatti, la chimica in flusso migliora sia il trasferimento di massa e calore, sia le condizioni di mescolamento, con conseguente aumento della resa e della produttività delle reazioni, riduzione della generazione di rifiuti e dei costi. Da un'analisi approfondita della letteratura, è possibile apprezzare che, negli ultimi decenni, la maggior parte dei metodi a flusso continuo è stata sviluppata per reazioni in fase liquida, spesso utilizzando catalizzatori omogenei. Prendendo spunto dalla sintesi multistep su grande scala di piccole molecole, l'obiettivo di questa tesi di dottorato è stato quello di approfondire ulteriormente le applicazioni di questa tecnologia, sviluppando il pieno potenziale dei microreattori in nuove e inaspettate direzioni. In questo contesto, la ricerca ha integrato diversi step di reazione per la sintesi di piccole molecole (ad esempio, azetidine, derivati glicidilici e pirroli trifluorometilati). Inoltre, data la necessità di sviluppare metodi in continuo più ecocompatibili, che sostituiscano i tradizionali sistemi catalitici omogenei, tossici e costosi, la tesi ha prestato attenzione alla progettazione di metodi in continuo che sfruttino fotocatalizzatori eterogenei di maggiore efficienza. In particolare, è stato studiato l'uso di fotocatalizzatori a base di nitruro di carbonio per trasformazioni organiche, concentrandosi sull'effetto che il design nanostrutturale del catalizzatore ha sull'andamento della reazione. Questi innovativi catalizzatori eterogenei, preparati a partire da precursori a basso costo, presentano capacità di assorbimento della luce visibile ottimali, eccellente fotostabilità e superficie regolabile. La principale limitazione delle reazioni fotocatalitiche tradizionali è spesso la scalabilità, principalmente a causa della minore efficienza di trasmissione della luce nei grandi reattori batch, e della necessità di una considerevole quantità di costosi fotocatalizzatori a base di metalli. Per ridurre questo problema è stata studiata la progettazione di un nuovo reattore polimerico, funzionalizzato con nanocatalizzatori di nitruro di carbonio, che assicura una distribuzione uniforme della luce all'interno del reattore e facilita la scalabilità del processo. Tutte le reazioni chimiche spesso richiedono una fase di purificazione, che spesso viene effettuata in batch. Per questo motivo, lo scopo finale di questa tesi di dottorato è stato quello di sviluppare un protocollo flessibile per l'integrazione degli step di sintesi e purificazione in continuo per applicazioni nella preparazione di molecole di interesse farmaceutico. L'obiettivo è stato raggiunto utilizzando la cromatografia controcorrente in continuo che simula un "letto mobile", basato sulla combinazione di microreattori sequenziali e un sistema a doppia colonna. Il metodo di caricamento della colonna garantisce che il prodotto che attraversa completamente la prima colonna caricata venga caricato sulla seconda, evitando sprechi di materiale prezioso e la complessità tecnologica spesso associata all'uso di quattro o sei colonne, tipici della cromatografia a “letto mobile”. Rispetto agli approcci discontinui e ad altri approcci tradizionali, il nostro metodo consente di ottenere rese isolate più elevate (circa +60%), maggiore produttività (circa +30%) e minor consumo di solvente (circa -80%). È stata anche condotta un'analisi di circolarità e di valutazione del ciclo di vita (comunemente noto come LCA) per dimostrare i benefici ambientali del processo in flusso. Complessivamente, il protocollo ha permesso di ottenere una maggiore scalabilità e una maggiore idoneità per applicazioni industriali, fornendo uno strumento aggiuntivo per la progettazione di processi di produzione sostenibili.
Novel methodologies for the flow synthesis of organic scaffolds
SIVO, ALESSANDRA
2022/2023
Abstract
Continuous-flow manufacturing is an innovative approach that involves conducting reactions in a continuously flowing stream, using microreactors or microfabricated systems instead of traditional batch reactors. Here, reactants are continuously pumped into the microreactor, where they mix and react, and the product is continuously collected. This technology is radically changing the way to approach pharmaceutical and industrial organic chemistry. On one hand, the optimal performance of these kind of reactors paves the way for new possibilities from a chemical viewpoint (i.e., reactions that were not even considered as possible become now feasible); on the other hand, there is an indissoluble bond between this new technology and current themes related to process sustainability and circularity. In fact, flow processing improves mass and heat transfer and enhances mixing conditions, resulting in an increased reaction yield and productivity, with lower waste generation and cost consumption. From a closer look at the scientific literature, it is possible to appreciate that in the past decades most continuous-flow methods have been developed for reactions in the liquid phase, often using homogeneous catalysts. Taking the steps from the gram-scale multistep synthesis of small molecules under flow conditions, the aim of this PhD thesis was to expand this technology further, developing the full potential of microreactor engineering in new and unprecedented directions. In this context, this research has integrated multiple reaction steps for the synthesis of small molecules (i.e., azetidines, glycidyl derivatives, and trifluoromethylated pyrroles). Moreover, given the need to develop greener continuous methods that replace century-old, toxic, and expensive homogeneous catalysts, the thesis has also paid attention to the design of superior continuous-flow methods exploiting heterogeneous photocatalysts. In particular, we have studied the use of carbon nitride-based photocatalyst for organic transformations, focusing on the effect of catalyst nanostructuring on the reaction progress. These innovative heterogeneous catalysts are prepared from low-cost precursors, and have visible-light absorbing capabilities, excellent photostability, and tunable surface area. The main limitation of traditional photocatalytic reactions is often the scale-up, mainly due to the less efficient light transmission in large batch reactors and the requirement of considerable amount of expensive metal-based photocatalysts. To bypass this challenge, we have investigated the design of novel polymeric photoreactor, functionalized with carbon nitride nanocatalyst ensures a uniform light distribution inside the reactor and ease process scale up. All chemical reactions often require a purification step, which is often conducted using batch vessels. For this reason, the final purpose of this PhD thesis was to develop a flexible protocol for the in-line integration of flow synthesis and flow purification for applications in the end-to-end preparation of pharmaceutically-relevant small molecules. The goal was achieved using continuous countercurrent chromatography simulating a “moving bed”, involving the combination of sequential microreactors and twin-column system. The column loading method ensures that the product breaking through a fully loaded first column is loaded onto the second one, avoiding waste of precious material and technological complexity associated with the use of four-to-six columns typical of simulated moving bed chromatography. Compared to the discontinuous and other traditional approaches, our method leads to higher isolated yields (ca. +60%), higher productivity (ca. +30%), and reduced solvent consumption (ca. −80%). A circularity and life-cycle analysis (LCA) was also conducted to demonstrate the environmental benefits of the flow process. Overall, the protocol led to easier scalability and better suitability for industrial applications, providing an additional tool for the design of sustainable manufacturing processes.File | Dimensione | Formato | |
---|---|---|---|
Sivo_Thesis_AS_8.pdf
accessibile in internet per tutti
Dimensione
4.92 MB
Formato
Adobe PDF
|
4.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/207752