With rising concerns over climate change, the automotive industry has undergone a grad- ual transition of integrating electrical components into its powertrains. The powertrain is the fundamental system in any vehicle that allows for movement and mobility. The same shift in powertrain trends has also been observed in the agriculture machinery sec- tor, with tractor powertrains being "hybridized" by incorporating a Battery Pack and Electric Motors, along with a traditional Internal Combustion (I.C.) Engine. Hybrid tractor powertrains aim to offer an optimized balance between performance and emis- sions, thereby helping in bringing down carbon footprints of individual vehicles, while ensuring uncompromising performance benefits of a regular I.C. Engine powered tractor. In this thesis, an attempt has been made to design and simulate a series-hybrid tractor powertrain, while employing an Energy Management System (EMS) to efficiently optimize and prioritize power output distribution between the Engine and the Battery Pack. The entire powertrain, including electrical loads, battery pack, converter, and the EMS, has been modeled and simulated using Typhoon-HIL Schematic Editor and Typhoon-HIL SCADA. These two workbenches are part of the Typhoon-HIL Software Package, which is aimed at conducting real-time electrical simulation, testing and validation. Representative modeling of four 3∼ AC loads, two DC loads, and one 1∼ AC load has been carried out, enabling simulation and data collection of various load cases. Based on the simulations and results, it can be concluded that the EMS plays a vital role in optimizing powertrain performance by balancing energy flow between the Engine and the Battery Pack. The EMS, in conjunction with the Battery Pack, significantly impacts the power requirement from the Engine itself. This highlights the importance of hybridizing automotive powertrains, to reduce the reliance on high-displacement Internal Combustion Engines and decrease the vehicle’s overall carbon footprint during operation. Therefore, employing an effective Energy Management System with a robust algorithm can not only enhance powertrain efficiency and improve overall performance, but also significantly cut down on emissions in the long run.

Questa tesi presenta la simulazione e l’ottimizzazione di un powertrain ibrido in serie per trattori, che incorpora un efficiente sistema di gestione dell’energia per regolare la distribuzione di potenza tra il motore a combustione interna e la batteria. L’intero pow- ertrain, compresi i carichi elettrici, la batteria, il convertitore e il sistema di gestione dell’energia, è stato modellato e simulato utilizzando Typhoon-HIL Schematic Editor e Typhoon-HIL SCADA. È stata raggiunta una modellazione accurata di quattro carichi in corrente alternata a 3∼ , due carichi in corrente continua e un carico in corrente alternata a 1∼ , consentendo simulazioni realistiche. Attraverso simulazioni di successo e osservazioni registrate, il funzionamento di tutti i carichi elettrici, del bus in corrente continua, della batteria e del sistema di gestione dell’energia è stato esaminato approfonditamente. I risultati dimostrano che il powertrain ibrido funziona in modo efficace all’interno delle condizioni operative definite, con una cor- retta scambio di potenza e dati tra i diversi componenti. La batteria riduce efficacemente la potenza generata dal generatore, soddisfacendo l’obiettivo principale della tesi. Inoltre, il sistema di gestione dell’energia gestisce con successo la ricarica della batteria durante i periodi di bassa richiesta di potenza, migliorando la durata del powertrain attraverso cicli continui di carica e scarica. Sulla base delle simulazioni e dei risultati ottenuti, si può affermare con fiducia che il sistema di gestione dell’energia svolge un ruolo vitale nell’ottimizzazione delle prestazioni del powertrain bilanciando il flusso di energia tra il motore e la batteria. L’algoritmo di gestione dell’energia, in combinazione con la batteria, influisce in modo significativo sulle esigenze di potenza del motore. Ciò sottolinea l’importanza dell’ibridazione dei power- train automobilistici per ridurre la dipendenza da motori a combustione interna potenti e diminuire l’impronta di carbonio del veicolo durante il funzionamento. L’impiego di un sistema di gestione dell’energia efficace può ulteriormente migliorare l’efficienza del powertrain.

Hardware in loop simulation and testing for series hybrid architectures

Pati, Prateek
2022/2023

Abstract

With rising concerns over climate change, the automotive industry has undergone a grad- ual transition of integrating electrical components into its powertrains. The powertrain is the fundamental system in any vehicle that allows for movement and mobility. The same shift in powertrain trends has also been observed in the agriculture machinery sec- tor, with tractor powertrains being "hybridized" by incorporating a Battery Pack and Electric Motors, along with a traditional Internal Combustion (I.C.) Engine. Hybrid tractor powertrains aim to offer an optimized balance between performance and emis- sions, thereby helping in bringing down carbon footprints of individual vehicles, while ensuring uncompromising performance benefits of a regular I.C. Engine powered tractor. In this thesis, an attempt has been made to design and simulate a series-hybrid tractor powertrain, while employing an Energy Management System (EMS) to efficiently optimize and prioritize power output distribution between the Engine and the Battery Pack. The entire powertrain, including electrical loads, battery pack, converter, and the EMS, has been modeled and simulated using Typhoon-HIL Schematic Editor and Typhoon-HIL SCADA. These two workbenches are part of the Typhoon-HIL Software Package, which is aimed at conducting real-time electrical simulation, testing and validation. Representative modeling of four 3∼ AC loads, two DC loads, and one 1∼ AC load has been carried out, enabling simulation and data collection of various load cases. Based on the simulations and results, it can be concluded that the EMS plays a vital role in optimizing powertrain performance by balancing energy flow between the Engine and the Battery Pack. The EMS, in conjunction with the Battery Pack, significantly impacts the power requirement from the Engine itself. This highlights the importance of hybridizing automotive powertrains, to reduce the reliance on high-displacement Internal Combustion Engines and decrease the vehicle’s overall carbon footprint during operation. Therefore, employing an effective Energy Management System with a robust algorithm can not only enhance powertrain efficiency and improve overall performance, but also significantly cut down on emissions in the long run.
STORTI GAJANI, GIANCARLO
Hemmati, Marziyeh
ING - Scuola di Ingegneria Industriale e dell'Informazione
18-lug-2023
2022/2023
Questa tesi presenta la simulazione e l’ottimizzazione di un powertrain ibrido in serie per trattori, che incorpora un efficiente sistema di gestione dell’energia per regolare la distribuzione di potenza tra il motore a combustione interna e la batteria. L’intero pow- ertrain, compresi i carichi elettrici, la batteria, il convertitore e il sistema di gestione dell’energia, è stato modellato e simulato utilizzando Typhoon-HIL Schematic Editor e Typhoon-HIL SCADA. È stata raggiunta una modellazione accurata di quattro carichi in corrente alternata a 3∼ , due carichi in corrente continua e un carico in corrente alternata a 1∼ , consentendo simulazioni realistiche. Attraverso simulazioni di successo e osservazioni registrate, il funzionamento di tutti i carichi elettrici, del bus in corrente continua, della batteria e del sistema di gestione dell’energia è stato esaminato approfonditamente. I risultati dimostrano che il powertrain ibrido funziona in modo efficace all’interno delle condizioni operative definite, con una cor- retta scambio di potenza e dati tra i diversi componenti. La batteria riduce efficacemente la potenza generata dal generatore, soddisfacendo l’obiettivo principale della tesi. Inoltre, il sistema di gestione dell’energia gestisce con successo la ricarica della batteria durante i periodi di bassa richiesta di potenza, migliorando la durata del powertrain attraverso cicli continui di carica e scarica. Sulla base delle simulazioni e dei risultati ottenuti, si può affermare con fiducia che il sistema di gestione dell’energia svolge un ruolo vitale nell’ottimizzazione delle prestazioni del powertrain bilanciando il flusso di energia tra il motore e la batteria. L’algoritmo di gestione dell’energia, in combinazione con la batteria, influisce in modo significativo sulle esigenze di potenza del motore. Ciò sottolinea l’importanza dell’ibridazione dei power- train automobilistici per ridurre la dipendenza da motori a combustione interna potenti e diminuire l’impronta di carbonio del veicolo durante il funzionamento. L’impiego di un sistema di gestione dell’energia efficace può ulteriormente migliorare l’efficienza del powertrain.
File allegati
File Dimensione Formato  
2023_07_Pati_Thesis_01.pdf

accessibile in internet per tutti

Descrizione: Thesis
Dimensione 54.19 MB
Formato Adobe PDF
54.19 MB Adobe PDF Visualizza/Apri
2023_07_Pati_Executive Summary_02.pdf

accessibile in internet per tutti

Descrizione: Executive Summary
Dimensione 4.12 MB
Formato Adobe PDF
4.12 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/208305