Nitrogen oxides (NOx) are pollutants generated during the combustion of fuel and air. Governments worldwide issued increasingly stringent regulations to limit and regulate their emissions from the different sources. To meet these regulations, several technologies have been developed among which the Selective Catalytic Reduction (SCR) is the state-of-the-art technology for the abatement of NOx from Diesel engines. SCR operates catalytically converting NO and NO₂ in presence of ammonia to molecular nitrogen and water which can be safely released into the atmosphere. The first industrial-scale catalysts for the abatement of NOx were based on noble metals, however due to their strong activity in ammonia oxidation, noble metal catalysts were then replaced by metal oxides. Later, transition-metal ion-exchanged zeolites have gained attention due to their wide operability range, their excellent thermal stability and cost-effectiveness. Nowadays, SCR technology takes advantage of copper exchanged small pore zeolites catalysts however, considering the more stringent limitations of Euro 7 standard, that imposes more stringent limits on NOx emission and specifically on N2O, iron-based zeolite catalysts characterized by a much lower N₂O production seem a promising alternative to copper ones. The aim of this thesis is the investigation of Fe-exchanged small pores zeolites specifically, Fe/CHA. Contrarily to Cu/CHA, which have been widely investigated in literature, the Fe based ones are still under investigation. Furthermore, the identification of the active sites and their role in NH₃-SCR is challenging, mostly due to the presence of many different Fe species and their interconversion under SCR conditions. It is then necessary to study the catalysts and development a methodology to unequivocally identify and quantify these species. Several characterization techniques have been employed in previous studies, but the results are not complete: often they are not able to quantify the active species, or the test conditions are far from the real conditions of the studied system. In this thesis three samples with increasing iron loading are studied with a series of transient response methods including NO+NH₃ reduction, NH₃ adsorption + TPD, NO₂ adsorption + TPD, and CO oxidation.
Gli ossidi di azoto (NOx) sono tra gli inquinanti rilasciati durante il processo di combustione dei carburanti nei motori Diesel. I governi di tutto il mondo hanno emanato normative sempre più stringenti per regolare e limitarne le emissioni. In risposta, sono state sviluppate diverse tecnologie, tra cui la Riduzione Catalitica Selettiva (SCR, Selective Catalytic Reduction), che si è affermata come una delle soluzioni più promettenti ed efficaci. La reazione SCR opera convertendo cataliticamente NO ed NO₂ in presenza di ammoniaca, ottenendo azoto molecolare e acqua che possono essere rilasciati nell'atmosfera. Inizialmente, i catalizzatori industriali per l’abbattimento degli NOx si basavano su metalli nobili. Tuttavia, a causa della spinta attività per l’ossidazione di ammoniaca, sono stati sostituiti da ossidi metallici. Successivamente, le zeoliti scambiate con metalli di transizione hanno attirato l'attenzione grazie al loro ampio campo di operabilità, alla loro eccellente stabilità termica ed al rapporto costo-efficacia. Le attuali applicazioni della tecnologia SCR sfruttano zeoliti scambiate con rame. Tuttavia, in vista della normativa Euro 7, che impone limiti più rigorosi sulle emissioni di NOx, le zeoliti a base di al ferro sembrano una promettente alternativa a quelli al rame. Focus di questa tesi sono le zeoliti a pori piccoli scambiate con ferro, note come Fe/CHA. Rispetto ai corrispettivi a base di rame, ampiamente studiate in letteratura, le zeoliti a base di ferro sono ancora oggetto di indagine. Inoltre, l’identificazione deli siti attivi e del loro ruolo nella reazione NH₃-SCR sono complessi, principalmente a causa della presenza di numerose specie di ferro sulla superficie catalitica, della loro interconversione in condizioni di SCR. È quindi necessario studiare i catalizzatori a base di ferro e sviluppare una metodologia che consenta un’inequivocabile individuazione e quantificazione delle specie attive. Diversi metodi di caratterizzazione sono stati impiegati negli studi precedenti, tuttavia i risultati ottenuti non sono esaustivi: spesso non è possibile quantificare i siti attivi o le condizioni di prova differiscono significativamente dalle reali condizioni operative del sistema SCR. Nel presente lavoro, tre campioni con differenti carichi di ferro vengono testati con dei metodi a risposta transitoria (TRM, Transient Response Methods), tra cui riduzione di NO+NH₃, adsorbimento di NH₃ + TPD, adsorbimento di NO₂ + TPD e ossidazione del CO. Integrando queste tecniche con una valutazione dell'attività del catalizzatore, si mira a rilevare le specie attive e caratterizzare il sistema Fe/CHA.
Identification of the Fe active species in Fe/CHA catalysts for NH3-SCR of NOx by transient response methods
ANGELONI, GRETA
2022/2023
Abstract
Nitrogen oxides (NOx) are pollutants generated during the combustion of fuel and air. Governments worldwide issued increasingly stringent regulations to limit and regulate their emissions from the different sources. To meet these regulations, several technologies have been developed among which the Selective Catalytic Reduction (SCR) is the state-of-the-art technology for the abatement of NOx from Diesel engines. SCR operates catalytically converting NO and NO₂ in presence of ammonia to molecular nitrogen and water which can be safely released into the atmosphere. The first industrial-scale catalysts for the abatement of NOx were based on noble metals, however due to their strong activity in ammonia oxidation, noble metal catalysts were then replaced by metal oxides. Later, transition-metal ion-exchanged zeolites have gained attention due to their wide operability range, their excellent thermal stability and cost-effectiveness. Nowadays, SCR technology takes advantage of copper exchanged small pore zeolites catalysts however, considering the more stringent limitations of Euro 7 standard, that imposes more stringent limits on NOx emission and specifically on N2O, iron-based zeolite catalysts characterized by a much lower N₂O production seem a promising alternative to copper ones. The aim of this thesis is the investigation of Fe-exchanged small pores zeolites specifically, Fe/CHA. Contrarily to Cu/CHA, which have been widely investigated in literature, the Fe based ones are still under investigation. Furthermore, the identification of the active sites and their role in NH₃-SCR is challenging, mostly due to the presence of many different Fe species and their interconversion under SCR conditions. It is then necessary to study the catalysts and development a methodology to unequivocally identify and quantify these species. Several characterization techniques have been employed in previous studies, but the results are not complete: often they are not able to quantify the active species, or the test conditions are far from the real conditions of the studied system. In this thesis three samples with increasing iron loading are studied with a series of transient response methods including NO+NH₃ reduction, NH₃ adsorption + TPD, NO₂ adsorption + TPD, and CO oxidation.File | Dimensione | Formato | |
---|---|---|---|
2023_7_Angeloni_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: testo tesi
Dimensione
4.67 MB
Formato
Adobe PDF
|
4.67 MB | Adobe PDF | Visualizza/Apri |
2023_7_Angeloni_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
911.29 kB
Formato
Adobe PDF
|
911.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/208341