Fused Filament Fabrication (FFF) is an Additive Manufacturing (AM) technology exploiting polymer filaments. It is widely spread thanks to its ease of usage and the wide range of available printable materials. However, polymer printed artefacts still strongly lack mechanical properties, namely stiffness, and strength. Fibre-reinforced polymer filaments have been developed to address this lack of performance. However, inter-layer adhesion remains weak, causing mechanical performance to be lower than injection moulded parts one. This thesis aims first to understand the factors influencing the properties of carbon-fibre-reinforced FFF printed components. Three filaments were created using Polyamide 12 as the base material, two of which were reinforced with short carbon fibres, 10% and 15% in weight, respectively. These filaments were obtained by compounding chopped strands of short carbon fibres with PA12 pellets. Fibre length ranged between 150 and 250 microns. Initially, the mechanical characterization, based on different mechanical tests and focused mainly on tensile tests, of injection moulded (IM) specimens made from these three materials was performed and used as a benchmark. The same samples were 3D-printed at varying raster angles and printing orientations. Then these filaments were also used to print lattice structures. Two unit cells were considered, such as the Honeycomb and the Primitive, to design these structures. Compression tests were performed on lattice arrays having a different number of cells, layer height, relative density and fibre quantity. The objective was to understand how to optimize compression strength and stiffness by varying printing parameters and the geometry of the lattice. The lower properties of AM specimens compared to IM ones is due to a lack of compaction of FFF. In fact it is demonstrated that at equal volume FFF parts are always less dense than IM ones. The study of lattice structures aims at bridging the present mechanical gap by working on geometrical freedom, not possible in injection moulding, generating light but performing structures by optimizing material compounding and process parameters. Results demonstrated that the increase of the fibre quantity benefits the tensile, flexural and impact strength of injection moulded components and their thermal properties. In addition, the fibres also increase the tensile strength of 3D-printed specimens and their stiffness. However, in this case, the best results were obtained using the 10% reinforced PA12 filament. Concerning the lattice structures, the Honeycomb structure is stiffer and stronger than the Primitive. The increase in the layer height negatively influences the lattice performance. Also, compression resistance decreases with increasing the fibre quantity. Besides, lattices printed with the unreinforced PA12 filament showed decreasing stiffness when the number of cells was increased at equal volume , while reinforced ones displayed the opposite effect. These results demonstrate that carbon fibre-reinforced PA12 can be a promising material for the FFF technology and for printing complex and lightweight topologies such as lattice structures. However, further research efforts are needed to improve the performance of 3D-printed components compared to the injection moulded ones by optimising the material formulation and printing parameters.
La Fused Filament Fabrication (FFF) è una tecnologia di fabbricazione additiva (AM) che utilizza filamenti polimerici. È ampiamente diffusa grazie alla sua facilità di utilizzo e all'ampia gamma di materiali disponibili. Tuttavia, i manufatti stampati in polimero possiedono basse proprietà meccaniche, in particolare rigidità e resistenza. Per ovviare a questa mancanza di prestazioni sono stati sviluppati filamenti polimerici rinforzati con fibre. Tuttavia, l'adesione tra gli strati rimane debole, causando prestazioni meccaniche inferiori rispetto alle parti stampate a iniezione. Questa tesi mira innanzitutto a comprendere i fattori che influenzano le proprietà dei componenti stampati FFF rinforzati con fibre di carbonio. Sono stati creati tre filamenti utilizzando come materiale di base la Poliammide 12, due dei quali sono stati rinforzati con fibre corte di carbonio, rispettivamente al 10% e al 15% in peso. Questi filamenti sono stati ottenuti mediante la co-estrusione di chopped strand di fibre corte di carbonio con pellet di PA12. La lunghezza delle fibre è compresa tra 150 e 250 micron. Inizialmente, è stata eseguita la caratterizzazione meccanica, basata su diversi test meccanici e incentrata principalmente su prove di trazione, di campioni stampati a iniezione realizzati con questi tre materiali e utilizzati come benchmark. Gli stessi campioni sono stati stampati in 3D con diversi angoli di deposizione e orientamenti di stampa. I filamenti sono stati poi utilizzati per stampare strutture reticolari. Per progettare queste strutture sono state prese in considerazione due celle unitarie, la Honeycomb e la Primitive. Sono stati eseguiti test di compressione su strutture con un diverso numero di celle, altezza dello strato, densità relativa e quantità di fibre. L'obiettivo era capire come ottimizzare la resistenza e la rigidezza alla compressione variando i parametri di stampa e la geometria del lattice. Le proprietà inferiori dei campioni AM rispetto a quelli ad iniezione sono dovute alla mancanza di compattazione. Infatti, è dimostrato che a parità di volume le parti stampate con la tecnologia FFF sono sempre meno dense di quelle ad iniezione. Lo studio delle strutture reticolari mira a colmare l'attuale gap meccanico lavorando sulla libertà geometrica, non possibile con lo stampaggio ad iniezione, generando strutture leggere ma performanti ottimizzando la formulazione dei materiali e i parametri di processo. I risultati hanno dimostrato che l'aumento della quantità di fibre favorisce la resistenza alla trazione, alla flessione e all'impatto dei componenti stampati a iniezione e le loro proprietà termiche. Inoltre, le fibre aumentano anche la resistenza alla trazione dei campioni stampati in 3D e la loro rigidezza. Tuttavia, in questo caso, i risultati migliori sono stati ottenuti utilizzando il filamento di PA12 rinforzato al 10%. Considerando le strutture reticolari, la struttura Honeycomb è più rigida e resistente della Primitive. L'aumento dell'altezza dello strato influisce negativamente sulle prestazioni del reticolo. Inoltre, la resistenza alla compressione diminuisce con l'aumento della quantità di fibre. I reticoli stampati con il filamento PA12 non rinforzato hanno mostrato una rigidità decrescente all’aumentare del numero di celle a parità di volume, mentre quelli rinforzati hanno mostrato l'effetto opposto. Questi risultati dimostrano che il PA12 rinforzato con fibre di carbonio può essere un materiale promettente per la tecnologia FFF e per la stampa di topologie complesse e leggere come le strutture reticolari. Tuttavia, ulteriori studi sono necessari per migliorare le prestazioni dei componenti stampati in 3D rispetto a quelli stampati a iniezione, ottimizzando la formulazione del materiale e i parametri di stampa.
Characterization of short carbon fibre reinforced Polyamide 12 filaments and lattice structures printed via fused filament fabrication
De Melgazzi, Alessandro
2021/2022
Abstract
Fused Filament Fabrication (FFF) is an Additive Manufacturing (AM) technology exploiting polymer filaments. It is widely spread thanks to its ease of usage and the wide range of available printable materials. However, polymer printed artefacts still strongly lack mechanical properties, namely stiffness, and strength. Fibre-reinforced polymer filaments have been developed to address this lack of performance. However, inter-layer adhesion remains weak, causing mechanical performance to be lower than injection moulded parts one. This thesis aims first to understand the factors influencing the properties of carbon-fibre-reinforced FFF printed components. Three filaments were created using Polyamide 12 as the base material, two of which were reinforced with short carbon fibres, 10% and 15% in weight, respectively. These filaments were obtained by compounding chopped strands of short carbon fibres with PA12 pellets. Fibre length ranged between 150 and 250 microns. Initially, the mechanical characterization, based on different mechanical tests and focused mainly on tensile tests, of injection moulded (IM) specimens made from these three materials was performed and used as a benchmark. The same samples were 3D-printed at varying raster angles and printing orientations. Then these filaments were also used to print lattice structures. Two unit cells were considered, such as the Honeycomb and the Primitive, to design these structures. Compression tests were performed on lattice arrays having a different number of cells, layer height, relative density and fibre quantity. The objective was to understand how to optimize compression strength and stiffness by varying printing parameters and the geometry of the lattice. The lower properties of AM specimens compared to IM ones is due to a lack of compaction of FFF. In fact it is demonstrated that at equal volume FFF parts are always less dense than IM ones. The study of lattice structures aims at bridging the present mechanical gap by working on geometrical freedom, not possible in injection moulding, generating light but performing structures by optimizing material compounding and process parameters. Results demonstrated that the increase of the fibre quantity benefits the tensile, flexural and impact strength of injection moulded components and their thermal properties. In addition, the fibres also increase the tensile strength of 3D-printed specimens and their stiffness. However, in this case, the best results were obtained using the 10% reinforced PA12 filament. Concerning the lattice structures, the Honeycomb structure is stiffer and stronger than the Primitive. The increase in the layer height negatively influences the lattice performance. Also, compression resistance decreases with increasing the fibre quantity. Besides, lattices printed with the unreinforced PA12 filament showed decreasing stiffness when the number of cells was increased at equal volume , while reinforced ones displayed the opposite effect. These results demonstrate that carbon fibre-reinforced PA12 can be a promising material for the FFF technology and for printing complex and lightweight topologies such as lattice structures. However, further research efforts are needed to improve the performance of 3D-printed components compared to the injection moulded ones by optimising the material formulation and printing parameters.File | Dimensione | Formato | |
---|---|---|---|
2023_05_De_Melgazzi_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
22.16 MB
Formato
Adobe PDF
|
22.16 MB | Adobe PDF | Visualizza/Apri |
2023_05_De_Melgazzi_Executive_Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/208941