Due to the future widespread adoption of electric vehicles (EVs) it is crucial to take advantage of the possibilities offered by Vehicle to Grid (V2G) technologies. Many studies on V2G were already performed in domestic environments but the increasing number of sells in EVs market suggest that there is the need to examine also how V2G can be implemented from the companies’ point of view. Following these motivations this thesis presents an innovative algorithm designed to optimize the utilization of Vehicle-to-Grid (V2G) technology in industrial landscapes, with the aim of advancing the transition towards a more sustainable future. The algorithm maximizes revenues and minimizes costs while also reducing wasted energy and so carbon dioxide (CO2) emissions, contributing to environmental preservation. The algorithm incorporates three optimizers: the negotiation optimizer, Model Predictive Control (MPC), and the SOC updating optimizer. Through these three algorithms after an agreement in between the employees and the company, the optimal State of Charge (SOC) profile and control actions for each vehicle are generated. Through extensive testing, the algorithm consistently delivered optimal results, showcasing its efficacy and adaptability in diverse scenarios. Companies by implementing this algorithm can achieve multiple benefits, including financial gains and environmental preservation, leading to a more sustainable future.
Il continuo aumento delle vendite di veicoli elettrici rende imperativo trovare nuovi modi per integrare il loro utilizzo nella società ed uno di questi è sfruttare al massimo le potenzialità della tecnologia Vehicle to Grid. Molti studi sono già stati effettuati sul V2G, però ci si è sempre fermati ad esaminare scenari domestici. È quindi necessario andare oltre e studiare anche una possibile applicazione negli ecosistemi aziendali. Per le precedenti motivazioni questa tesi presenta un algoritmo innovativo progettato per ottimizzare l'utilizzo della tecnologia Vehicle-to-Grid (V2G) in contesti industriali, con l'obiettivo di promuovere la transizione verso un futuro più sostenibile. L'algoritmo massimizza i ricavi e minimizza i costi, riducendo allo stesso tempo lo spreco di energia e quindi le emissioni di anidride carbonica (CO2), contribuendo alla salvaguardia dell'ambiente. L'algoritmo incorpora tre ottimizzatori: l'ottimizzatore di negoziazione, il Model Predictive Control (MPC) e l'ottimizzatore di aggiornamento SOC. Attraverso questi tre sottoprogrammi, dopo un accordo tra dipendenti e azienda, vengono generati il profilo ottimale dello stato di carica (SOC) e le azioni di controllo per ciascun veicolo. Attraverso un'ampia serie di test, l'algoritmo ha costantemente fornito risultati ottimali, dimostrando la sua efficacia e adattabilità in scenari diversi. Le aziende che implementano questo algoritmo possono ottenere numerosi vantaggi, tra cui guadagni finanziari e la conservazione dell'ambiente, contribuendo a un futuro più sostenibile.
Design and testing of online and offline optimization algorithms for vehicle-to-grid (V2G) industrial applications
FAGGIO, GIANLUCA
2022/2023
Abstract
Due to the future widespread adoption of electric vehicles (EVs) it is crucial to take advantage of the possibilities offered by Vehicle to Grid (V2G) technologies. Many studies on V2G were already performed in domestic environments but the increasing number of sells in EVs market suggest that there is the need to examine also how V2G can be implemented from the companies’ point of view. Following these motivations this thesis presents an innovative algorithm designed to optimize the utilization of Vehicle-to-Grid (V2G) technology in industrial landscapes, with the aim of advancing the transition towards a more sustainable future. The algorithm maximizes revenues and minimizes costs while also reducing wasted energy and so carbon dioxide (CO2) emissions, contributing to environmental preservation. The algorithm incorporates three optimizers: the negotiation optimizer, Model Predictive Control (MPC), and the SOC updating optimizer. Through these three algorithms after an agreement in between the employees and the company, the optimal State of Charge (SOC) profile and control actions for each vehicle are generated. Through extensive testing, the algorithm consistently delivered optimal results, showcasing its efficacy and adaptability in diverse scenarios. Companies by implementing this algorithm can achieve multiple benefits, including financial gains and environmental preservation, leading to a more sustainable future.File | Dimensione | Formato | |
---|---|---|---|
Thesis Faggio Gianluca- Design and Testing of Online and Offline Optimization Algorithms for Vehicle-to-Grid (V2G) Industrial Applications.pdf
accessibile in internet per tutti
Descrizione: Thesis Faggio Gianluca- Design and Testing of Online and Offline Optimization Algorithms for Vehicle-to-Grid (V2G) Industrial Applications
Dimensione
4.31 MB
Formato
Adobe PDF
|
4.31 MB | Adobe PDF | Visualizza/Apri |
Executive summary-Faggio Gianluca- Design and Testing of Online and Offline Optimization Algorithms for Vehicle-to-Grid (V2G) Industrial Applications.pdf
accessibile in internet per tutti
Descrizione: Executive summary Faggio Gianluca, Design and Testing of Online and Offline Optimization Algorithms for Vehicle-to-Grid (V2G) Industrial Applications
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/209039