In the field of Bone Tissue Engineering (BTE), the Triply Periodic Minimal Surfaces (TPMS) scaffolding method has emerged as a promising approach for facilitating bone tissue regeneration. This study focuses on analyzing the influence of different TPMS geometries and porosity levels on the mechanical response of scaffolds. The mechanical properties under compression loading are investigated in terms of equivalent stiffness and viscoelastic response, through a combination of Finite Element (FE) simulations using Abaqus (Dassault systems Simulia Corp., USA), and experimental tests. Three TPMS geometries, namely Schwarz Diamond (SD), Gyroid (SG), and Schwarz Primitive (SP), are considered in this study. For each geometry, different porosity levels are examined. Initially, a numerical analysis is conducted to study the mechanical compressive behavior of TPMS scaffolds by applying linear elastic material properties and accounting for non-linear geometry within a large displacement field. The influence of TPMS scaffold geometries and three porosity levels (60%, 70%, and 80%) on the mechanical behavior is investigated. The results indicate a linear trend for each model, suggesting the absence of non-linearities arising from the TPMS geometries. This allows for the study of non-linear building materials. In the following stage, the viscoelastic responses of the three TPMS geometries in the 70% and 80% porosity configurations are investigated through experimental and numerical stress relaxation tests. The numerical simulations employ a linear viscoelastic model (Prony Series) using material parameters extracted from an experimental characterization of the same material used in the experiments (Visijet M3 Crystal). The experimental results demonstrate that both the porosity and geometry influence the stress relaxation behavior of the scaffolds. Higher porosities lead to an increased viscoelastic response, while different geometries result in variations in the stress relaxation trend. These differences are attributed to variations in deviatoric and volumetric strain distributions across each scaffold model. As a result, the averaged deviatoric and volumetric strains are analyzed to evaluate how different geometries amplify microscopic strains resulting from local shape and volume deformations of the solid material.
Nel campo della Bone Tissue Engineering (BTE), il metodo di design basato su Triply Periodic Minimal Surfaces (TPMS) si è affermato un approccio promettente per favorire la rigenerazione del tessuto osseo. Questo lavoro si concentra sull'analisi dell'influenza di diverse geometrie TPMS e di diversi livelli di porosità sulla risposta meccanica degli scaffold. Le proprietà meccaniche sotto carico di compressione vengono indagate in termini di rigidità equivalente e risposta viscoelastica mediante una combinazione di simulazioni agli elementi finiti (FEA), utilizzando Abaqus (Dassault systems Simulia Corp., USA), e test sperimentali. In questo studio sono considerate tre geometrie TPMS, ovvero Schwarz Diamond (SD), Gyroid (SG) e Schwarz Primitive (SP). Per ciascuna geometria, vengono esaminati diversi livelli di porosità. Inizialmente, viene condotta un'analisi numerica per studiare il comportamento meccanico degli scaffold sotto carico di compressione, applicando proprietà elastiche lineari del materiale e considerando la non linearità della geometria in un ampio campo di deformazione. In tal modo, viene investigata l'influenza della geometria e dei tre livelli di porosità (60%, 70% e 80%) sulla risposta meccanica delle diverse microstrutture. I risultati indicano una tendenza lineare per ciascun modello, suggerendo l'assenza di non linearità derivanti dalle geometrie degli scaffold. Ciò consente l’applicazione di materiali costituenti con proprietà non lineari. Nella fase seguente, le risposte viscoelastiche delle tre geometrie TPMS nelle configurazioni di porosità del 70% e dell'80% vengono indagate mediante test sperimentali e simulazioni numeriche di stress relaxation. Le simulazioni numeriche utilizzano un modello di materiale viscoelastico lineare (Prony Series) i cui parametri sono stati ottenuti dalla caratterizzazione sperimentale del materiale di stampa (Visijet M3 Crystal). I risultati sperimentali dimostrano che sia la porosità che la geometria influenzano il comportamento di stress relaxation degli scaffold. Porosità più elevate conducono a una risposta viscoelastica aumentata, mentre diverse geometrie causano variazioni nella tendenza di rilassamento. Le differenze osservate sono dovute alle variazioni nei contributi di deformazione deviatorica e volumetrica all'interno di ciascun modello di struttura. Pertanto, il rapporto di deformazioni deviatorica su volumetrica è stato calcolato al fine di valutare, in media, come le diverse geometrie amplifichino le deformazioni microscopiche risultanti dalle variazioni locali di forma e volume del materiale solido.
Mechanical analysis of the compressive and viscoelastic behavior of TPMS scaffolds for Bone Tissue Engineering
Todescato, Francesca
2022/2023
Abstract
In the field of Bone Tissue Engineering (BTE), the Triply Periodic Minimal Surfaces (TPMS) scaffolding method has emerged as a promising approach for facilitating bone tissue regeneration. This study focuses on analyzing the influence of different TPMS geometries and porosity levels on the mechanical response of scaffolds. The mechanical properties under compression loading are investigated in terms of equivalent stiffness and viscoelastic response, through a combination of Finite Element (FE) simulations using Abaqus (Dassault systems Simulia Corp., USA), and experimental tests. Three TPMS geometries, namely Schwarz Diamond (SD), Gyroid (SG), and Schwarz Primitive (SP), are considered in this study. For each geometry, different porosity levels are examined. Initially, a numerical analysis is conducted to study the mechanical compressive behavior of TPMS scaffolds by applying linear elastic material properties and accounting for non-linear geometry within a large displacement field. The influence of TPMS scaffold geometries and three porosity levels (60%, 70%, and 80%) on the mechanical behavior is investigated. The results indicate a linear trend for each model, suggesting the absence of non-linearities arising from the TPMS geometries. This allows for the study of non-linear building materials. In the following stage, the viscoelastic responses of the three TPMS geometries in the 70% and 80% porosity configurations are investigated through experimental and numerical stress relaxation tests. The numerical simulations employ a linear viscoelastic model (Prony Series) using material parameters extracted from an experimental characterization of the same material used in the experiments (Visijet M3 Crystal). The experimental results demonstrate that both the porosity and geometry influence the stress relaxation behavior of the scaffolds. Higher porosities lead to an increased viscoelastic response, while different geometries result in variations in the stress relaxation trend. These differences are attributed to variations in deviatoric and volumetric strain distributions across each scaffold model. As a result, the averaged deviatoric and volumetric strains are analyzed to evaluate how different geometries amplify microscopic strains resulting from local shape and volume deformations of the solid material.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Todescato.pdf
Open Access dal 27/06/2024
Descrizione: Tesi
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Todescato.pdf
Open Access dal 27/06/2024
Descrizione: Executive summary
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/209092