The subject of this thesis is the identification of an aerodynamic model of the SwitchMaster, a sub-scale distributed electric propulsion demonstrator aircraft; the ultimate goal of the aerodynamic model is to be used in a flight simulator, working in the Simulink environment. In the work, the aero-propulsive interactions are clearly considered, by means of an innovative extension of the classical flight dynamics approach, based on stability and control derivatives. In particular, suitable analytical functions were used: each stability and control coefficient is seen as the sum of an unblown part and of a "delta term", function of the advance ratio of the 6 propellers of the airplane, considered collectively. In order to select an appropriate shape for the delta terms, a preliminary aerodynamic investigation was carried out, using a Vortex Lattice code. The analysis, preceded by a convergence study, led to choosing exponential functions. Later, a flight test campaign was planned and executed, with the aim of identifying the stability and control coefficients of the real airplane in glide conditions, assimilated to the unblown ones, as well as at various advance ratios. This allowed to experimentally derive each of the aforementioned exponential terms, some of which were analyzed more thoroughly, also proposing comparisons with VLM simulations. Finally, the level of fidelity was assessed. Both in longitudinal and in lateral-directional dynamics satisfactory results were obtained, even if with some exceptions, especially in the first case and at low advance ratios: anyway, some possible improvements were proposed. However, the final quality of the results suffers from some limitations in data gathering. Nevertheless and ultimately, the validity of the proposed approach was demonstrated, constructing a global blown model of the SwitchMaster, as well as the fact that the addition of the exponential terms generally leads to more accurate simulations, compared to those achievable from the unblown model.
L’oggetto di questa tesi è l’identificazione di un modello aerodinamico dello SwitchMaster, un velivolo dimostratore in scala a propulsione elettrica distribuita; lo scopo ultimo di tale modello aerodinamico è quello di venir utilizzato in un simulatore di volo, funzionante in ambiente Simulink. Nel lavoro le interazioni aero-propulsive vengono naturalmente considerate, attraverso un’innovativa estensione dell’approccio classico in dinamica del volo, basato sulle derivate di stabilità e controllo. In particolare, sono state utilizzate opportune funzioni analitiche: ogni coefficiente di stabilità e controllo viene visto come la somma di una parte non soffiata e di un "termine delta", funzione del rapporto di avanzamento delle 6 eliche del velivolo, considerate collettivamente. Al fine di selezionare una forma appropriata per i termini delta, è stata svolta un’indagine aerodinamica preliminare, utilizzando un codice Vortex Lattice. Tale analisi, preceduta da uno studio di convergenza, ha portato a scegliere delle funzioni esponenziali. In seguito, è stata programmata e svolta una campagna di test di volo, finalizzata a identificare i coefficienti di stabilità e controllo del velivolo reale in condizioni di planata, assimilate a quelle non soffiate, così come a vari rapporti di avanzamento. Ciò ha permesso di ricavare sperimentalmente ognuno dei suddetti termini esponenziali, alcuni dei quali sono stati analizzati più a fondo, anche proponendo confronti con le simulazioni VLM. Infine, è stato valutato il livello di fedeltà. Sia nella dinamica longitudinale che in quella latero-direzionale sono stati ottenuti risultati soddisfacenti, anche se con alcune eccezioni, specie nel primo caso e a bassi rapporti di avanzamento: sono stati comunque proposti dei possibili miglioramenti. Peraltro, la qualità finale dei risultati soffre di alcune limitazioni nella raccolta dati. Ciononostante e in ultima analisi, è stata dimostrata la validità dell’approccio proposto, costruendo un modello globale soffiato dello SwitchMaster, cosi’ come il fatto che l’aggiunta dei modelli esponenziali porti a simulazioni generalmente più accurate, rispetto a quelle ottenibili dal solo modello non soffiato.
Modeling and identification of a distributed electric propulsion demonstrator aircraft
Bottà , Luca
2022/2023
Abstract
The subject of this thesis is the identification of an aerodynamic model of the SwitchMaster, a sub-scale distributed electric propulsion demonstrator aircraft; the ultimate goal of the aerodynamic model is to be used in a flight simulator, working in the Simulink environment. In the work, the aero-propulsive interactions are clearly considered, by means of an innovative extension of the classical flight dynamics approach, based on stability and control derivatives. In particular, suitable analytical functions were used: each stability and control coefficient is seen as the sum of an unblown part and of a "delta term", function of the advance ratio of the 6 propellers of the airplane, considered collectively. In order to select an appropriate shape for the delta terms, a preliminary aerodynamic investigation was carried out, using a Vortex Lattice code. The analysis, preceded by a convergence study, led to choosing exponential functions. Later, a flight test campaign was planned and executed, with the aim of identifying the stability and control coefficients of the real airplane in glide conditions, assimilated to the unblown ones, as well as at various advance ratios. This allowed to experimentally derive each of the aforementioned exponential terms, some of which were analyzed more thoroughly, also proposing comparisons with VLM simulations. Finally, the level of fidelity was assessed. Both in longitudinal and in lateral-directional dynamics satisfactory results were obtained, even if with some exceptions, especially in the first case and at low advance ratios: anyway, some possible improvements were proposed. However, the final quality of the results suffers from some limitations in data gathering. Nevertheless and ultimately, the validity of the proposed approach was demonstrated, constructing a global blown model of the SwitchMaster, as well as the fact that the addition of the exponential terms generally leads to more accurate simulations, compared to those achievable from the unblown model.File | Dimensione | Formato | |
---|---|---|---|
2023_07_Bottà.pdf
accessibile in internet per tutti
Dimensione
10.3 MB
Formato
Adobe PDF
|
10.3 MB | Adobe PDF | Visualizza/Apri |
2023_07_Bottà_ES.pdf
accessibile in internet per tutti
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/209328